@@ -123,6 +123,7 @@ struct idpf_vport {
bool rx_vec_allowed;
bool tx_vec_allowed;
+ bool rx_use_avx2;
bool rx_use_avx512;
bool tx_use_avx512;
@@ -302,5 +302,9 @@ uint16_t idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pk
__rte_internal
uint16_t idpf_dp_singleq_recv_scatter_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
+__rte_internal
+uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
#endif /* _IDPF_COMMON_RXTX_H_ */
new file mode 100644
@@ -0,0 +1,480 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Intel Corporation
+ */
+
+#include <rte_vect.h>
+
+#include "idpf_common_rxtx.h"
+#include "idpf_common_device.h"
+
+static __rte_always_inline void
+idpf_singleq_rx_rearm(struct idpf_rx_queue *rxq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+ struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start];
+
+ rxdp += rxq->rxrearm_start;
+
+ /* Pull 'n' more MBUFs into the software ring */
+ if (rte_mempool_get_bulk(rxq->mp,
+ (void *)rxep,
+ IDPF_RXQ_REARM_THRESH) < 0) {
+ if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
+ rxq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
+ rxep[i] = &rxq->fake_mbuf;
+ _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[i].read), dma_addr0);
+ }
+ }
+ rte_atomic_fetch_add_explicit(&rxq->rx_stats.mbuf_alloc_failed,
+ IDPF_RXQ_REARM_THRESH, rte_memory_order_relaxed);
+ return;
+ }
+
+ struct rte_mbuf *mb0, *mb1;
+ __m128i dma_addr0, dma_addr1;
+ __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+ RTE_PKTMBUF_HEADROOM);
+ /* Initialize the mbufs in vector, process 2 mbufs in one loop */
+ for (i = 0; i < IDPF_RXQ_REARM_THRESH; i += 2, rxep += 2) {
+ __m128i vaddr0, vaddr1;
+
+ mb0 = rxep[0];
+ mb1 = rxep[1];
+
+ /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
+ offsetof(struct rte_mbuf, buf_addr) + 8);
+ vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+ vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+ /* convert pa to dma_addr hdr/data */
+ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+ dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+ /* add headroom to pa values */
+ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+ dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+ /* flush desc with pa dma_addr */
+ _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr0);
+ _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr1);
+ }
+
+ rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
+ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+ rxq->rxrearm_start = 0;
+
+ rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+static inline uint16_t
+_idpf_singleq_recv_raw_pkts_vec_avx2(struct idpf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+#define IDPF_DESCS_PER_LOOP_AVX 8
+
+ const uint32_t *ptype_tbl = rxq->adapter->ptype_tbl;
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+ 0, rxq->mbuf_initializer);
+ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+ volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+ const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+ rxdp += rxq->rx_tail;
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
+ idpf_singleq_rx_rearm(rxq);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (!(rxdp->flex_nic_wb.status_error0 &
+ rte_cpu_to_le_32(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S)))
+ return 0;
+
+ /* 8 packets DD mask, LSB in each 32-bit value */
+ const __m256i dd_check = _mm256_set1_epi32(1);
+
+ /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+ const __m256i shuf_msk =
+ _mm256_set_epi8
+ (/* first descriptor */
+ 0xFF, 0xFF,
+ 0xFF, 0xFF, /* rss hash parsed separately */
+ 11, 10, /* octet 10~11, 16 bits vlan_macip */
+ 5, 4, /* octet 4~5, 16 bits data_len */
+ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
+ 5, 4, /* octet 4~5, 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF, /*pkt_type set as unknown */
+ /* second descriptor */
+ 0xFF, 0xFF,
+ 0xFF, 0xFF, /* rss hash parsed separately */
+ 11, 10, /* octet 10~11, 16 bits vlan_macip */
+ 5, 4, /* octet 4~5, 16 bits data_len */
+ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
+ 5, 4, /* octet 4~5, 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF /*pkt_type set as unknown */
+ );
+ /**
+ * compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ /* Status/Error flag masks */
+ /**
+ * mask everything except Checksum Reports, RSS indication
+ * and VLAN indication.
+ * bit6:4 for IP/L4 checksum errors.
+ * bit12 is for RSS indication.
+ * bit13 is for VLAN indication.
+ */
+ const __m256i flags_mask =
+ _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
+ /**
+ * data to be shuffled by the result of the flags mask shifted by 4
+ * bits. This gives use the l3_l4 flags.
+ */
+ const __m256i l3_l4_flags_shuf =
+ _mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
+ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ /**
+ * second 128-bits
+ * shift right 20 bits to use the low two bits to indicate
+ * outer checksum status
+ * shift right 1 bit to make sure it not exceed 255
+ */
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+ (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+ RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
+ const __m256i cksum_mask =
+ _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
+ RTE_MBUF_F_RX_L4_CKSUM_MASK |
+ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+ RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
+ /**
+ * data to be shuffled by result of flag mask, shifted down 12.
+ * If RSS(bit12)/VLAN(bit13) are set,
+ * shuffle moves appropriate flags in place.
+ */
+ const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+ RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+ RTE_MBUF_F_RX_RSS_HASH, 0,
+ /* end up 128-bits */
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+ RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+ RTE_MBUF_F_RX_RSS_HASH, 0);
+
+ RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += IDPF_DESCS_PER_LOOP_AVX,
+ rxdp += IDPF_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256
+ ((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+ const __m128i raw_desc7 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 = _mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 0));
+
+ raw_desc6_7 = _mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc6),
+ raw_desc7, 1);
+ raw_desc4_5 = _mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc4),
+ raw_desc5, 1);
+ raw_desc2_3 = _mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc2),
+ raw_desc3, 1);
+ raw_desc0_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc0),
+ raw_desc1, 1);
+
+ /**
+ * convert descriptors 4-7 into mbufs, re-arrange fields.
+ * Then write into the mbuf.
+ */
+ __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
+ __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
+
+ /**
+ * to get packet types, ptype is located in bit16-25
+ * of each 128bits
+ */
+ const __m256i ptype_mask = _mm256_set1_epi16(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M);
+ const __m256i ptypes6_7 = _mm256_and_si256(raw_desc6_7, ptype_mask);
+ const __m256i ptypes4_5 = _mm256_and_si256(raw_desc4_5, ptype_mask);
+ const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
+ const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
+ const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
+ const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
+
+ mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
+ mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
+ mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
+ mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
+ /* merge the status bits into one register */
+ const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
+ raw_desc4_5);
+
+ /**
+ * convert descriptors 0-3 into mbufs, re-arrange fields.
+ * Then write into the mbuf.
+ */
+ __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
+ __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
+
+ /**
+ * to get packet types, ptype is located in bit16-25
+ * of each 128bits
+ */
+ const __m256i ptypes2_3 = _mm256_and_si256(raw_desc2_3, ptype_mask);
+ const __m256i ptypes0_1 = _mm256_and_si256(raw_desc0_1, ptype_mask);
+ const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
+ const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
+ const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
+ const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
+
+ mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
+ mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
+ mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
+ mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
+ /* merge the status bits into one register */
+ const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
+ raw_desc0_1);
+
+ /**
+ * take the two sets of status bits and merge to one
+ * After merge, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+ status0_3);
+
+ /* now do flag manipulation */
+
+ /* get only flag/error bits we want */
+ const __m256i flag_bits = _mm256_and_si256(status0_7, flags_mask);
+ /**
+ * l3_l4_error flags, shuffle, then shift to correct adjustment
+ * of flags in flags_shuf, and finally mask out extra bits
+ */
+ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 4));
+ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+
+ __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
+ __m256i l4_outer_flags = _mm256_and_si256(l3_l4_flags, l4_outer_mask);
+ l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
+
+ __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
+ l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+ /* set rss and vlan flags */
+ const __m256i rss_vlan_flag_bits = _mm256_srli_epi32(flag_bits, 12);
+ const __m256i rss_vlan_flags = _mm256_shuffle_epi8(rss_vlan_flags_shuf,
+ rss_vlan_flag_bits);
+
+ /* merge flags */
+ __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, rss_vlan_flags);
+
+ /**
+ * At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init
+ * data so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend
+ * for each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != offsetof(struct rte_mbuf,
+ rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN
+ (offsetof(struct rte_mbuf, rearm_data), 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
+ rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
+ rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
+ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+ rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
+ /* permute to add in the rx_descriptor e.g. rss fields */
+ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+ /* write to mbuf */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
+
+ /* repeat for the odd mbufs */
+ const __m256i odd_flags = _mm256_castsi128_si256(_mm256_extracti128_si256
+ (mbuf_flags, 1));
+ rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
+ rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
+ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+ rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
+ /* since odd mbufs are already in hi 128-bits use blend */
+ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+ /* again write to mbufs */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
+
+ /* perform dd_check */
+ status0_7 = _mm256_and_si256(status0_7, dd_check);
+ status0_7 = _mm256_packs_epi32(status0_7, _mm256_setzero_si256());
+
+ uint64_t burst = rte_popcount64(_mm_cvtsi128_si64(_mm256_extracti128_si256
+ (status0_7, 1)));
+ burst += rte_popcount64(_mm_cvtsi128_si64(_mm256_castsi256_si128
+ (status0_7)));
+
+ received += burst;
+ if (burst != IDPF_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+ rxq->rxrearm_nb += received;
+ return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+ return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts);
+}
@@ -16,6 +16,13 @@ sources = files(
)
if arch_subdir == 'x86'
+ idpf_avx2_lib = static_library('idpf_avx2_lib',
+ 'idpf_common_rxtx_avx2.c',
+ dependencies: [static_rte_ethdev, static_rte_hash],
+ include_directories: includes,
+ c_args: [cflags, '-mavx2'])
+ objs += idpf_avx2_lib.extract_objects('idpf_common_rxtx_avx2.c')
+
if cc_has_avx512
cflags += ['-DCC_AVX512_SUPPORT']
avx512_args = cflags + cc_avx512_flags
@@ -6,6 +6,7 @@ INTERNAL {
idpf_dp_prep_pkts;
idpf_dp_singleq_recv_pkts;
+ idpf_dp_singleq_recv_pkts_avx2;
idpf_dp_singleq_recv_pkts_avx512;
idpf_dp_singleq_recv_scatter_pkts;
idpf_dp_singleq_xmit_pkts;
@@ -776,6 +776,10 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
vport->rx_vec_allowed = true;
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 &&
+ rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
+ vport->rx_use_avx2 = true;
+
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
@@ -827,6 +831,13 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
return;
}
#endif /* CC_AVX512_SUPPORT */
+ if (vport->rx_use_avx2) {
+ PMD_DRV_LOG(NOTICE,
+ "Using Single AVX2 Vector Rx (port %d).",
+ dev->data->port_id);
+ dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts_avx2;
+ return;
+ }
}
if (dev->data->scattered_rx) {