[v6,3/4] mldev: add scalar type conversion functions

Message ID 20230207160008.30182-4-syalavarthi@marvell.com (mailing list archive)
State Accepted, archived
Delegated to: Thomas Monjalon
Headers
Series Implementation of ML common code |

Checks

Context Check Description
ci/checkpatch success coding style OK

Commit Message

Srikanth Yalavarthi Feb. 7, 2023, 4 p.m. UTC
  Added scalar implementations to support conversion of data types.
Support is enabled to handle int8, uint8, int16, uint16, float16,
float32 and bfloat16 types.

Signed-off-by: Srikanth Yalavarthi <syalavarthi@marvell.com>
---
v5:
* Moved the code from drivers/common/ml to lib/mldev
* Added rte_ml_io_ prefix to the functions

v2:
* Updated internal function names
* Updated function attributes to __rte_weak

 lib/mldev/meson.build          |   1 +
 lib/mldev/mldev_utils_scalar.c | 720 +++++++++++++++++++++++++++++++++
 lib/mldev/version.map          |  12 +
 3 files changed, 733 insertions(+)
 create mode 100644 lib/mldev/mldev_utils_scalar.c

--
2.17.1
  

Patch

diff --git a/lib/mldev/meson.build b/lib/mldev/meson.build
index 452b83a480..fce9c0ebee 100644
--- a/lib/mldev/meson.build
+++ b/lib/mldev/meson.build
@@ -5,6 +5,7 @@  sources = files(
         'rte_mldev_pmd.c',
         'rte_mldev.c',
         'mldev_utils.c',
+        'mldev_utils_scalar.c',
 )

 headers = files(
diff --git a/lib/mldev/mldev_utils_scalar.c b/lib/mldev/mldev_utils_scalar.c
new file mode 100644
index 0000000000..40320ed3ef
--- /dev/null
+++ b/lib/mldev/mldev_utils_scalar.c
@@ -0,0 +1,720 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright (c) 2022 Marvell.
+ */
+
+#include <errno.h>
+#include <math.h>
+#include <stdint.h>
+
+#include "mldev_utils.h"
+
+/* Description:
+ * This file implements scalar versions of Machine Learning utility functions used to convert data
+ * types from higher precision to lower precision and vice-versa.
+ */
+
+#ifndef BIT
+#define BIT(nr) (1UL << (nr))
+#endif
+
+#ifndef BITS_PER_LONG
+#define BITS_PER_LONG (__SIZEOF_LONG__ * 8)
+#endif
+
+#ifndef GENMASK_U32
+#define GENMASK_U32(h, l) (((~0UL) << (l)) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
+#endif
+
+/* float32: bit index of MSB & LSB of sign, exponent and mantissa */
+#define FP32_LSB_M 0
+#define FP32_MSB_M 22
+#define FP32_LSB_E 23
+#define FP32_MSB_E 30
+#define FP32_LSB_S 31
+#define FP32_MSB_S 31
+
+/* float32: bitmask for sign, exponent and mantissa */
+#define FP32_MASK_S GENMASK_U32(FP32_MSB_S, FP32_LSB_S)
+#define FP32_MASK_E GENMASK_U32(FP32_MSB_E, FP32_LSB_E)
+#define FP32_MASK_M GENMASK_U32(FP32_MSB_M, FP32_LSB_M)
+
+/* float16: bit index of MSB & LSB of sign, exponent and mantissa */
+#define FP16_LSB_M 0
+#define FP16_MSB_M 9
+#define FP16_LSB_E 10
+#define FP16_MSB_E 14
+#define FP16_LSB_S 15
+#define FP16_MSB_S 15
+
+/* float16: bitmask for sign, exponent and mantissa */
+#define FP16_MASK_S GENMASK_U32(FP16_MSB_S, FP16_LSB_S)
+#define FP16_MASK_E GENMASK_U32(FP16_MSB_E, FP16_LSB_E)
+#define FP16_MASK_M GENMASK_U32(FP16_MSB_M, FP16_LSB_M)
+
+/* bfloat16: bit index of MSB & LSB of sign, exponent and mantissa */
+#define BF16_LSB_M 0
+#define BF16_MSB_M 6
+#define BF16_LSB_E 7
+#define BF16_MSB_E 14
+#define BF16_LSB_S 15
+#define BF16_MSB_S 15
+
+/* bfloat16: bitmask for sign, exponent and mantissa */
+#define BF16_MASK_S GENMASK_U32(BF16_MSB_S, BF16_LSB_S)
+#define BF16_MASK_E GENMASK_U32(BF16_MSB_E, BF16_LSB_E)
+#define BF16_MASK_M GENMASK_U32(BF16_MSB_M, BF16_LSB_M)
+
+/* Exponent bias */
+#define FP32_BIAS_E 127
+#define FP16_BIAS_E 15
+#define BF16_BIAS_E 127
+
+#define FP32_PACK(sign, exponent, mantissa)                                                        \
+	(((sign) << FP32_LSB_S) | ((exponent) << FP32_LSB_E) | (mantissa))
+
+#define FP16_PACK(sign, exponent, mantissa)                                                        \
+	(((sign) << FP16_LSB_S) | ((exponent) << FP16_LSB_E) | (mantissa))
+
+#define BF16_PACK(sign, exponent, mantissa)                                                        \
+	(((sign) << BF16_LSB_S) | ((exponent) << BF16_LSB_E) | (mantissa))
+
+/* Represent float32 as float and uint32_t */
+union float32 {
+	float f;
+	uint32_t u;
+};
+
+__rte_weak int
+rte_ml_io_float32_to_int8(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	int8_t *output_buffer;
+	uint64_t i;
+	int i32;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (int8_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		i32 = (int32_t)round((*input_buffer) * scale);
+
+		if (i32 < INT8_MIN)
+			i32 = INT8_MIN;
+
+		if (i32 > INT8_MAX)
+			i32 = INT8_MAX;
+
+		*output_buffer = (int8_t)i32;
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_int8_to_float32(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	int8_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (int8_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = scale * (float)(*input_buffer);
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_float32_to_uint8(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	uint8_t *output_buffer;
+	int32_t i32;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (uint8_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		i32 = (int32_t)round((*input_buffer) * scale);
+
+		if (i32 < 0)
+			i32 = 0;
+
+		if (i32 > UINT8_MAX)
+			i32 = UINT8_MAX;
+
+		*output_buffer = (uint8_t)i32;
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_uint8_to_float32(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	uint8_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (uint8_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = scale * (float)(*input_buffer);
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_float32_to_int16(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	int16_t *output_buffer;
+	int32_t i32;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (int16_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		i32 = (int32_t)round((*input_buffer) * scale);
+
+		if (i32 < INT16_MIN)
+			i32 = INT16_MIN;
+
+		if (i32 > INT16_MAX)
+			i32 = INT16_MAX;
+
+		*output_buffer = (int16_t)i32;
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_int16_to_float32(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	int16_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (int16_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = scale * (float)(*input_buffer);
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_float32_to_uint16(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	uint16_t *output_buffer;
+	int32_t i32;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (uint16_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		i32 = (int32_t)round((*input_buffer) * scale);
+
+		if (i32 < 0)
+			i32 = 0;
+
+		if (i32 > UINT16_MAX)
+			i32 = UINT16_MAX;
+
+		*output_buffer = (uint16_t)i32;
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+__rte_weak int
+rte_ml_io_uint16_to_float32(float scale, uint64_t nb_elements, void *input, void *output)
+{
+	uint16_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((scale == 0) || (nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (uint16_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = scale * (float)(*input_buffer);
+
+		input_buffer++;
+		output_buffer++;
+	}
+
+	return 0;
+}
+
+/* Convert a single precision floating point number (float32) into a half precision
+ * floating point number (float16) using round to nearest rounding mode.
+ */
+static uint16_t
+__float32_to_float16_scalar_rtn(float x)
+{
+	union float32 f32; /* float32 input */
+	uint32_t f32_s;	   /* float32 sign */
+	uint32_t f32_e;	   /* float32 exponent */
+	uint32_t f32_m;	   /* float32 mantissa */
+	uint16_t f16_s;	   /* float16 sign */
+	uint16_t f16_e;	   /* float16 exponent */
+	uint16_t f16_m;	   /* float16 mantissa */
+	uint32_t tbits;	   /* number of truncated bits */
+	uint32_t tmsb;	   /* MSB position of truncated bits */
+	uint32_t m_32;	   /* temporary float32 mantissa */
+	uint16_t m_16;	   /* temporary float16 mantissa */
+	uint16_t u16;	   /* float16 output */
+	int be_16;	   /* float16 biased exponent, signed */
+
+	f32.f = x;
+	f32_s = (f32.u & FP32_MASK_S) >> FP32_LSB_S;
+	f32_e = (f32.u & FP32_MASK_E) >> FP32_LSB_E;
+	f32_m = (f32.u & FP32_MASK_M) >> FP32_LSB_M;
+
+	f16_s = f32_s;
+	f16_e = 0;
+	f16_m = 0;
+
+	switch (f32_e) {
+	case (0): /* float32: zero or subnormal number */
+		f16_e = 0;
+		if (f32_m == 0) /* zero */
+			f16_m = 0;
+		else /* subnormal number, convert to zero */
+			f16_m = 0;
+		break;
+	case (FP32_MASK_E >> FP32_LSB_E): /* float32: infinity or nan */
+		f16_e = FP16_MASK_E >> FP16_LSB_E;
+		if (f32_m == 0) { /* infinity */
+			f16_m = 0;
+		} else { /* nan, propagate mantissa and set MSB of mantissa to 1 */
+			f16_m = f32_m >> (FP32_MSB_M - FP16_MSB_M);
+			f16_m |= BIT(FP16_MSB_M);
+		}
+		break;
+	default: /* float32: normal number */
+		/* compute biased exponent for float16 */
+		be_16 = (int)f32_e - FP32_BIAS_E + FP16_BIAS_E;
+
+		/* overflow, be_16 = [31-INF], set to infinity */
+		if (be_16 >= (int)(FP16_MASK_E >> FP16_LSB_E)) {
+			f16_e = FP16_MASK_E >> FP16_LSB_E;
+			f16_m = 0;
+		} else if ((be_16 >= 1) && (be_16 < (int)(FP16_MASK_E >> FP16_LSB_E))) {
+			/* normal float16, be_16 = [1:30]*/
+			f16_e = be_16;
+			m_16 = f32_m >> (FP32_LSB_E - FP16_LSB_E);
+			tmsb = FP32_MSB_M - FP16_MSB_M - 1;
+			if ((f32_m & GENMASK_U32(tmsb, 0)) > BIT(tmsb)) {
+				/* round: non-zero truncated bits except MSB */
+				m_16++;
+
+				/* overflow into exponent */
+				if (((m_16 & FP16_MASK_E) >> FP16_LSB_E) == 0x1)
+					f16_e++;
+			} else if ((f32_m & GENMASK_U32(tmsb, 0)) == BIT(tmsb)) {
+				/* round: MSB of truncated bits and LSB of m_16 is set */
+				if ((m_16 & 0x1) == 0x1) {
+					m_16++;
+
+					/* overflow into exponent */
+					if (((m_16 & FP16_MASK_E) >> FP16_LSB_E) == 0x1)
+						f16_e++;
+				}
+			}
+			f16_m = m_16 & FP16_MASK_M;
+		} else if ((be_16 >= -(int)(FP16_MSB_M)) && (be_16 < 1)) {
+			/* underflow: zero / subnormal, be_16 = [-9:0] */
+			f16_e = 0;
+
+			/* add implicit leading zero */
+			m_32 = f32_m | BIT(FP32_LSB_E);
+			tbits = FP32_LSB_E - FP16_LSB_E - be_16 + 1;
+			m_16 = m_32 >> tbits;
+
+			/* if non-leading truncated bits are set */
+			if ((f32_m & GENMASK_U32(tbits - 1, 0)) > BIT(tbits - 1)) {
+				m_16++;
+
+				/* overflow into exponent */
+				if (((m_16 & FP16_MASK_E) >> FP16_LSB_E) == 0x1)
+					f16_e++;
+			} else if ((f32_m & GENMASK_U32(tbits - 1, 0)) == BIT(tbits - 1)) {
+				/* if leading truncated bit is set */
+				if ((m_16 & 0x1) == 0x1) {
+					m_16++;
+
+					/* overflow into exponent */
+					if (((m_16 & FP16_MASK_E) >> FP16_LSB_E) == 0x1)
+						f16_e++;
+				}
+			}
+			f16_m = m_16 & FP16_MASK_M;
+		} else if (be_16 == -(int)(FP16_MSB_M + 1)) {
+			/* underflow: zero, be_16 = [-10] */
+			f16_e = 0;
+			if (f32_m != 0)
+				f16_m = 1;
+			else
+				f16_m = 0;
+		} else {
+			/* underflow: zero, be_16 = [-INF:-11] */
+			f16_e = 0;
+			f16_m = 0;
+		}
+
+		break;
+	}
+
+	u16 = FP16_PACK(f16_s, f16_e, f16_m);
+
+	return u16;
+}
+
+__rte_weak int
+rte_ml_io_float32_to_float16(uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	uint16_t *output_buffer;
+	uint64_t i;
+
+	if ((nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (uint16_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = __float32_to_float16_scalar_rtn(*input_buffer);
+
+		input_buffer = input_buffer + 1;
+		output_buffer = output_buffer + 1;
+	}
+
+	return 0;
+}
+
+/* Convert a half precision floating point number (float16) into a single precision
+ * floating point number (float32).
+ */
+static float
+__float16_to_float32_scalar_rtx(uint16_t f16)
+{
+	union float32 f32; /* float32 output */
+	uint16_t f16_s;	   /* float16 sign */
+	uint16_t f16_e;	   /* float16 exponent */
+	uint16_t f16_m;	   /* float16 mantissa */
+	uint32_t f32_s;	   /* float32 sign */
+	uint32_t f32_e;	   /* float32 exponent */
+	uint32_t f32_m;	   /* float32 mantissa*/
+	uint8_t shift;	   /* number of bits to be shifted */
+	uint32_t clz;	   /* count of leading zeroes */
+	int e_16;	   /* float16 exponent unbiased */
+
+	f16_s = (f16 & FP16_MASK_S) >> FP16_LSB_S;
+	f16_e = (f16 & FP16_MASK_E) >> FP16_LSB_E;
+	f16_m = (f16 & FP16_MASK_M) >> FP16_LSB_M;
+
+	f32_s = f16_s;
+	switch (f16_e) {
+	case (FP16_MASK_E >> FP16_LSB_E): /* float16: infinity or nan */
+		f32_e = FP32_MASK_E >> FP32_LSB_E;
+		if (f16_m == 0x0) { /* infinity */
+			f32_m = f16_m;
+		} else { /* nan, propagate mantissa, set MSB of mantissa to 1 */
+			f32_m = f16_m;
+			shift = FP32_MSB_M - FP16_MSB_M;
+			f32_m = (f32_m << shift) & FP32_MASK_M;
+			f32_m |= BIT(FP32_MSB_M);
+		}
+		break;
+	case 0: /* float16: zero or sub-normal */
+		f32_m = f16_m;
+		if (f16_m == 0) { /* zero signed */
+			f32_e = 0;
+		} else { /* subnormal numbers */
+			clz = __builtin_clz((uint32_t)f16_m) - sizeof(uint32_t) * 8 + FP16_LSB_E;
+			e_16 = (int)f16_e - clz;
+			f32_e = FP32_BIAS_E + e_16 - FP16_BIAS_E;
+
+			shift = clz + (FP32_MSB_M - FP16_MSB_M) + 1;
+			f32_m = (f32_m << shift) & FP32_MASK_M;
+		}
+		break;
+	default: /* normal numbers */
+		f32_m = f16_m;
+		e_16 = (int)f16_e;
+		f32_e = FP32_BIAS_E + e_16 - FP16_BIAS_E;
+
+		shift = (FP32_MSB_M - FP16_MSB_M);
+		f32_m = (f32_m << shift) & FP32_MASK_M;
+	}
+
+	f32.u = FP32_PACK(f32_s, f32_e, f32_m);
+
+	return f32.f;
+}
+
+__rte_weak int
+rte_ml_io_float16_to_float32(uint64_t nb_elements, void *input, void *output)
+{
+	uint16_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (uint16_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = __float16_to_float32_scalar_rtx(*input_buffer);
+
+		input_buffer = input_buffer + 1;
+		output_buffer = output_buffer + 1;
+	}
+
+	return 0;
+}
+
+/* Convert a single precision floating point number (float32) into a
+ * brain float number (bfloat16) using round to nearest rounding mode.
+ */
+static uint16_t
+__float32_to_bfloat16_scalar_rtn(float x)
+{
+	union float32 f32; /* float32 input */
+	uint32_t f32_s;	   /* float32 sign */
+	uint32_t f32_e;	   /* float32 exponent */
+	uint32_t f32_m;	   /* float32 mantissa */
+	uint16_t b16_s;	   /* float16 sign */
+	uint16_t b16_e;	   /* float16 exponent */
+	uint16_t b16_m;	   /* float16 mantissa */
+	uint32_t tbits;	   /* number of truncated bits */
+	uint16_t u16;	   /* float16 output */
+
+	f32.f = x;
+	f32_s = (f32.u & FP32_MASK_S) >> FP32_LSB_S;
+	f32_e = (f32.u & FP32_MASK_E) >> FP32_LSB_E;
+	f32_m = (f32.u & FP32_MASK_M) >> FP32_LSB_M;
+
+	b16_s = f32_s;
+	b16_e = 0;
+	b16_m = 0;
+
+	switch (f32_e) {
+	case (0): /* float32: zero or subnormal number */
+		b16_e = 0;
+		if (f32_m == 0) /* zero */
+			b16_m = 0;
+		else /* subnormal float32 number, normal bfloat16 */
+			goto bf16_normal;
+		break;
+	case (FP32_MASK_E >> FP32_LSB_E): /* float32: infinity or nan */
+		b16_e = BF16_MASK_E >> BF16_LSB_E;
+		if (f32_m == 0) { /* infinity */
+			b16_m = 0;
+		} else { /* nan, propagate mantissa and set MSB of mantissa to 1 */
+			b16_m = f32_m >> (FP32_MSB_M - BF16_MSB_M);
+			b16_m |= BIT(BF16_MSB_M);
+		}
+		break;
+	default: /* float32: normal number, normal bfloat16 */
+		goto bf16_normal;
+	}
+
+	goto bf16_pack;
+
+bf16_normal:
+	b16_e = f32_e;
+	tbits = FP32_MSB_M - BF16_MSB_M;
+	b16_m = f32_m >> tbits;
+
+	/* if non-leading truncated bits are set */
+	if ((f32_m & GENMASK_U32(tbits - 1, 0)) > BIT(tbits - 1)) {
+		b16_m++;
+
+		/* if overflow into exponent */
+		if (((b16_m & BF16_MASK_E) >> BF16_LSB_E) == 0x1)
+			b16_e++;
+	} else if ((f32_m & GENMASK_U32(tbits - 1, 0)) == BIT(tbits - 1)) {
+		/* if only leading truncated bit is set */
+		if ((b16_m & 0x1) == 0x1) {
+			b16_m++;
+
+			/* if overflow into exponent */
+			if (((b16_m & BF16_MASK_E) >> BF16_LSB_E) == 0x1)
+				b16_e++;
+		}
+	}
+	b16_m = b16_m & BF16_MASK_M;
+
+bf16_pack:
+	u16 = BF16_PACK(b16_s, b16_e, b16_m);
+
+	return u16;
+}
+
+__rte_weak int
+rte_ml_io_float32_to_bfloat16(uint64_t nb_elements, void *input, void *output)
+{
+	float *input_buffer;
+	uint16_t *output_buffer;
+	uint64_t i;
+
+	if ((nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (float *)input;
+	output_buffer = (uint16_t *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = __float32_to_bfloat16_scalar_rtn(*input_buffer);
+
+		input_buffer = input_buffer + 1;
+		output_buffer = output_buffer + 1;
+	}
+
+	return 0;
+}
+
+/* Convert a brain float number (bfloat16) into a
+ * single precision floating point number (float32).
+ */
+static float
+__bfloat16_to_float32_scalar_rtx(uint16_t f16)
+{
+	union float32 f32; /* float32 output */
+	uint16_t b16_s;	   /* float16 sign */
+	uint16_t b16_e;	   /* float16 exponent */
+	uint16_t b16_m;	   /* float16 mantissa */
+	uint32_t f32_s;	   /* float32 sign */
+	uint32_t f32_e;	   /* float32 exponent */
+	uint32_t f32_m;	   /* float32 mantissa*/
+	uint8_t shift;	   /* number of bits to be shifted */
+
+	b16_s = (f16 & BF16_MASK_S) >> BF16_LSB_S;
+	b16_e = (f16 & BF16_MASK_E) >> BF16_LSB_E;
+	b16_m = (f16 & BF16_MASK_M) >> BF16_LSB_M;
+
+	f32_s = b16_s;
+	switch (b16_e) {
+	case (BF16_MASK_E >> BF16_LSB_E): /* bfloat16: infinity or nan */
+		f32_e = FP32_MASK_E >> FP32_LSB_E;
+		if (b16_m == 0x0) { /* infinity */
+			f32_m = 0;
+		} else { /* nan, propagate mantissa, set MSB of mantissa to 1 */
+			f32_m = b16_m;
+			shift = FP32_MSB_M - BF16_MSB_M;
+			f32_m = (f32_m << shift) & FP32_MASK_M;
+			f32_m |= BIT(FP32_MSB_M);
+		}
+		break;
+	case 0: /* bfloat16: zero or subnormal */
+		f32_m = b16_m;
+		if (b16_m == 0) { /* zero signed */
+			f32_e = 0;
+		} else { /* subnormal numbers */
+			goto fp32_normal;
+		}
+		break;
+	default: /* bfloat16: normal number */
+		goto fp32_normal;
+	}
+
+	goto fp32_pack;
+
+fp32_normal:
+	f32_m = b16_m;
+	f32_e = FP32_BIAS_E + b16_e - BF16_BIAS_E;
+
+	shift = (FP32_MSB_M - BF16_MSB_M);
+	f32_m = (f32_m << shift) & FP32_MASK_M;
+
+fp32_pack:
+	f32.u = FP32_PACK(f32_s, f32_e, f32_m);
+
+	return f32.f;
+}
+
+__rte_weak int
+rte_ml_io_bfloat16_to_float32(uint64_t nb_elements, void *input, void *output)
+{
+	uint16_t *input_buffer;
+	float *output_buffer;
+	uint64_t i;
+
+	if ((nb_elements == 0) || (input == NULL) || (output == NULL))
+		return -EINVAL;
+
+	input_buffer = (uint16_t *)input;
+	output_buffer = (float *)output;
+
+	for (i = 0; i < nb_elements; i++) {
+		*output_buffer = __bfloat16_to_float32_scalar_rtx(*input_buffer);
+
+		input_buffer = input_buffer + 1;
+		output_buffer = output_buffer + 1;
+	}
+
+	return 0;
+}
diff --git a/lib/mldev/version.map b/lib/mldev/version.map
index 9d06659493..0706b565be 100644
--- a/lib/mldev/version.map
+++ b/lib/mldev/version.map
@@ -52,4 +52,16 @@  INTERNAL {
 	rte_ml_io_type_size_get;
 	rte_ml_io_type_to_str;
 	rte_ml_io_format_to_str;
+	rte_ml_io_float32_to_int8;
+	rte_ml_io_int8_to_float32;
+	rte_ml_io_float32_to_uint8;
+	rte_ml_io_uint8_to_float32;
+	rte_ml_io_float32_to_int16;
+	rte_ml_io_int16_to_float32;
+	rte_ml_io_float32_to_uint16;
+	rte_ml_io_uint16_to_float32;
+	rte_ml_io_float32_to_float16;
+	rte_ml_io_float16_to_float32;
+	rte_ml_io_float32_to_bfloat16;
+	rte_ml_io_bfloat16_to_float32;
 };