[v10,18/23] event/dlb: add dequeue and its burst variants
diff mbox series

Message ID 1604082458-15368-19-git-send-email-timothy.mcdaniel@intel.com
State Superseded, archived
Delegated to: Jerin Jacob
Headers show
Series
  • Add DLB PMD
Related show

Checks

Context Check Description
ci/checkpatch success coding style OK

Commit Message

Timothy McDaniel Oct. 30, 2020, 6:27 p.m. UTC
Add support for dequeue, dequeue_burst, ...

DLB does not currently support interrupts, but instead uses
umonitor/umwait if supported by the processor. This allows
the software to monitor and wait on writes to a cache-line.

DLB supports normal and sparse cq mode. In normal mode the
hardware will pack 4 QEs into each cache line. In sparse cq
mode, the hardware will only populate one QE per cache line.
Software must be aware of the cq mode, and take the appropriate
actions, based on the mode.

Signed-off-by: Timothy McDaniel <timothy.mcdaniel@intel.com>
---
 doc/guides/eventdevs/dlb.rst |  21 ++
 drivers/event/dlb/dlb.c      | 691 +++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 712 insertions(+)

Comments

Eads, Gage Oct. 30, 2020, 7:51 p.m. UTC | #1
> -----Original Message-----
> From: McDaniel, Timothy <timothy.mcdaniel@intel.com>
> Sent: Friday, October 30, 2020 1:28 PM
> Cc: dev@dpdk.org; Carrillo, Erik G <erik.g.carrillo@intel.com>; Eads, Gage
> <gage.eads@intel.com>; Van Haaren, Harry <harry.van.haaren@intel.com>;
> jerinj@marvell.com; thomas@monjalon.net
> Subject: [PATCH v10 18/23] event/dlb: add dequeue and its burst variants
> 
> Add support for dequeue, dequeue_burst, ...
> 
> DLB does not currently support interrupts, but instead uses
> umonitor/umwait if supported by the processor. This allows
> the software to monitor and wait on writes to a cache-line.
> 
> DLB supports normal and sparse cq mode. In normal mode the
> hardware will pack 4 QEs into each cache line. In sparse cq
> mode, the hardware will only populate one QE per cache line.
> Software must be aware of the cq mode, and take the appropriate
> actions, based on the mode.
> 
> Signed-off-by: Timothy McDaniel <timothy.mcdaniel@intel.com>

I believe I added my tag to the v5 of this patch, but for good measure:
Reviewed-by: Gage Eads <gage.eads@intel.com>

Thanks,
Gage

Patch
diff mbox series

diff --git a/doc/guides/eventdevs/dlb.rst b/doc/guides/eventdevs/dlb.rst
index ae126c4..4c4f56b 100644
--- a/doc/guides/eventdevs/dlb.rst
+++ b/doc/guides/eventdevs/dlb.rst
@@ -318,3 +318,24 @@  increase a vdev's per-queue atomic-inflight allocation to (for example) 64:
 
        --vdev=dlb1_event,atm_inflights=64
 
+Deferred Scheduling
+~~~~~~~~~~~~~~~~~~~
+
+The DLB PMD's default behavior for managing a CQ is to "pop" the CQ once per
+dequeued event before returning from rte_event_dequeue_burst(). This frees the
+corresponding entries in the CQ, which enables the DLB to schedule more events
+to it.
+
+To support applications seeking finer-grained scheduling control -- for example
+deferring scheduling to get the best possible priority scheduling and
+load-balancing -- the PMD supports a deferred scheduling mode. In this mode,
+the CQ entry is not popped until the *subsequent* rte_event_dequeue_burst()
+call. This mode only applies to load-balanced event ports with dequeue depth of
+1.
+
+To enable deferred scheduling, use the defer_sched vdev argument like so:
+
+    .. code-block:: console
+
+       --vdev=dlb1_event,defer_sched=on
+
diff --git a/drivers/event/dlb/dlb.c b/drivers/event/dlb/dlb.c
index 4d65a7f..a30d270 100644
--- a/drivers/event/dlb/dlb.c
+++ b/drivers/event/dlb/dlb.c
@@ -25,6 +25,7 @@ 
 #include <rte_log.h>
 #include <rte_malloc.h>
 #include <rte_mbuf.h>
+#include <rte_power_intrinsics.h>
 #include <rte_prefetch.h>
 #include <rte_ring.h>
 #include <rte_string_fns.h>
@@ -2812,9 +2813,690 @@  dlb_event_enqueue_forward_burst_delayed(void *event_port,
 	return __dlb_event_enqueue_burst(event_port, events, num);
 }
 
+static __rte_always_inline int
+dlb_recv_qe(struct dlb_port *qm_port, struct dlb_dequeue_qe *qe,
+	    uint8_t *offset)
+{
+	uint8_t xor_mask[2][4] = { {0x0F, 0x0E, 0x0C, 0x08},
+				   {0x00, 0x01, 0x03, 0x07} };
+	uint8_t and_mask[4] = {0x0F, 0x0E, 0x0C, 0x08};
+	volatile struct dlb_dequeue_qe *cq_addr;
+	__m128i *qes = (__m128i *)qe;
+	uint64_t *cache_line_base;
+	uint8_t gen_bits;
+
+	cq_addr = dlb_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+	cq_addr = &cq_addr[qm_port->cq_idx];
+
+	cache_line_base = (void *)(((uintptr_t)cq_addr) & ~0x3F);
+	*offset = ((uintptr_t)cq_addr & 0x30) >> 4;
+
+	/* Load the next CQ cache line from memory. Pack these reads as tight
+	 * as possible to reduce the chance that DLB invalidates the line while
+	 * the CPU is reading it. Read the cache line backwards to ensure that
+	 * if QE[N] (N > 0) is valid, then QEs[0:N-1] are too.
+	 *
+	 * (Valid QEs start at &qe[offset])
+	 */
+	qes[3] = _mm_load_si128((__m128i *)&cache_line_base[6]);
+	qes[2] = _mm_load_si128((__m128i *)&cache_line_base[4]);
+	qes[1] = _mm_load_si128((__m128i *)&cache_line_base[2]);
+	qes[0] = _mm_load_si128((__m128i *)&cache_line_base[0]);
+
+	/* Evict the cache line ASAP */
+	dlb_cldemote(cache_line_base);
+
+	/* Extract and combine the gen bits */
+	gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
+		   ((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
+		   ((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
+		   ((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
+
+	/* XOR the combined bits such that a 1 represents a valid QE */
+	gen_bits ^= xor_mask[qm_port->gen_bit][*offset];
+
+	/* Mask off gen bits we don't care about */
+	gen_bits &= and_mask[*offset];
+
+	return __builtin_popcount(gen_bits);
+}
+
+static inline void
+dlb_inc_cq_idx(struct dlb_port *qm_port, int cnt)
+{
+	uint16_t idx = qm_port->cq_idx_unmasked + cnt;
+
+	qm_port->cq_idx_unmasked = idx;
+	qm_port->cq_idx = idx & qm_port->cq_depth_mask;
+	qm_port->gen_bit = (~(idx >> qm_port->gen_bit_shift)) & 0x1;
+}
+
+static inline int
+dlb_process_dequeue_qes(struct dlb_eventdev_port *ev_port,
+			struct dlb_port *qm_port,
+			struct rte_event *events,
+			struct dlb_dequeue_qe *qes,
+			int cnt)
+{
+	uint8_t *qid_mappings = qm_port->qid_mappings;
+	int i, num;
+
+	RTE_SET_USED(ev_port);  /* avoids unused variable error */
+
+	for (i = 0, num = 0; i < cnt; i++) {
+		struct dlb_dequeue_qe *qe = &qes[i];
+		int sched_type_map[4] = {
+			[DLB_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
+			[DLB_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
+			[DLB_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
+			[DLB_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
+		};
+
+		DLB_LOG_DBG("dequeue success, data = 0x%llx, qid=%d, event_type=%d, subevent=%d\npp_id = %d, sched_type = %d, qid = %d, err=%d\n",
+			    (long long)qe->data, qe->qid,
+			    qe->u.event_type.major,
+			    qe->u.event_type.sub,
+			    qe->pp_id, qe->sched_type, qe->qid, qe->error);
+
+		/* Fill in event information.
+		 * Note that flow_id must be embedded in the data by
+		 * the app, such as the mbuf RSS hash field if the data
+		 * buffer is a mbuf.
+		 */
+		if (unlikely(qe->error)) {
+			DLB_LOG_ERR("QE error bit ON\n");
+			DLB_INC_STAT(ev_port->stats.traffic.rx_drop, 1);
+			dlb_consume_qe_immediate(qm_port, 1);
+			continue; /* Ignore */
+		}
+
+		events[num].u64 = qe->data;
+		events[num].queue_id = qid_mappings[qe->qid];
+		events[num].priority = DLB_TO_EV_PRIO((uint8_t)qe->priority);
+		events[num].event_type = qe->u.event_type.major;
+		events[num].sub_event_type = qe->u.event_type.sub;
+		events[num].sched_type = sched_type_map[qe->sched_type];
+		DLB_INC_STAT(ev_port->stats.rx_sched_cnt[qe->sched_type], 1);
+		num++;
+	}
+	DLB_INC_STAT(ev_port->stats.traffic.rx_ok, num);
+
+	return num;
+}
+
+static inline int
+dlb_process_dequeue_four_qes(struct dlb_eventdev_port *ev_port,
+			     struct dlb_port *qm_port,
+			     struct rte_event *events,
+			     struct dlb_dequeue_qe *qes)
+{
+	int sched_type_map[] = {
+		[DLB_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
+		[DLB_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
+		[DLB_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
+		[DLB_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
+	};
+	const int num_events = DLB_NUM_QES_PER_CACHE_LINE;
+	uint8_t *qid_mappings = qm_port->qid_mappings;
+	__m128i sse_evt[2];
+	int i;
+
+	/* In the unlikely case that any of the QE error bits are set, process
+	 * them one at a time.
+	 */
+	if (unlikely(qes[0].error || qes[1].error ||
+		     qes[2].error || qes[3].error))
+		return dlb_process_dequeue_qes(ev_port, qm_port, events,
+					       qes, num_events);
+
+	for (i = 0; i < DLB_NUM_QES_PER_CACHE_LINE; i++) {
+		DLB_LOG_DBG("dequeue success, data = 0x%llx, qid=%d, event_type=%d, subevent=%d\npp_id = %d, sched_type = %d, qid = %d, err=%d\n",
+			    (long long)qes[i].data, qes[i].qid,
+			    qes[i].u.event_type.major,
+			    qes[i].u.event_type.sub,
+			    qes[i].pp_id, qes[i].sched_type, qes[i].qid,
+			    qes[i].error);
+	}
+
+	events[0].u64 = qes[0].data;
+	events[1].u64 = qes[1].data;
+	events[2].u64 = qes[2].data;
+	events[3].u64 = qes[3].data;
+
+	/* Construct the metadata portion of two struct rte_events
+	 * in one 128b SSE register. Event metadata is constructed in the SSE
+	 * registers like so:
+	 * sse_evt[0][63:0]:   event[0]'s metadata
+	 * sse_evt[0][127:64]: event[1]'s metadata
+	 * sse_evt[1][63:0]:   event[2]'s metadata
+	 * sse_evt[1][127:64]: event[3]'s metadata
+	 */
+	sse_evt[0] = _mm_setzero_si128();
+	sse_evt[1] = _mm_setzero_si128();
+
+	/* Convert the hardware queue ID to an event queue ID and store it in
+	 * the metadata:
+	 * sse_evt[0][47:40]   = qid_mappings[qes[0].qid]
+	 * sse_evt[0][111:104] = qid_mappings[qes[1].qid]
+	 * sse_evt[1][47:40]   = qid_mappings[qes[2].qid]
+	 * sse_evt[1][111:104] = qid_mappings[qes[3].qid]
+	 */
+#define DLB_EVENT_QUEUE_ID_BYTE 5
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+				     qid_mappings[qes[0].qid],
+				     DLB_EVENT_QUEUE_ID_BYTE);
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+				     qid_mappings[qes[1].qid],
+				     DLB_EVENT_QUEUE_ID_BYTE + 8);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+				     qid_mappings[qes[2].qid],
+				     DLB_EVENT_QUEUE_ID_BYTE);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+				     qid_mappings[qes[3].qid],
+				     DLB_EVENT_QUEUE_ID_BYTE + 8);
+
+	/* Convert the hardware priority to an event priority and store it in
+	 * the metadata:
+	 * sse_evt[0][55:48]   = DLB_TO_EV_PRIO(qes[0].priority)
+	 * sse_evt[0][119:112] = DLB_TO_EV_PRIO(qes[1].priority)
+	 * sse_evt[1][55:48]   = DLB_TO_EV_PRIO(qes[2].priority)
+	 * sse_evt[1][119:112] = DLB_TO_EV_PRIO(qes[3].priority)
+	 */
+#define DLB_EVENT_PRIO_BYTE 6
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+				     DLB_TO_EV_PRIO((uint8_t)qes[0].priority),
+				     DLB_EVENT_PRIO_BYTE);
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+				     DLB_TO_EV_PRIO((uint8_t)qes[1].priority),
+				     DLB_EVENT_PRIO_BYTE + 8);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+				     DLB_TO_EV_PRIO((uint8_t)qes[2].priority),
+				     DLB_EVENT_PRIO_BYTE);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+				     DLB_TO_EV_PRIO((uint8_t)qes[3].priority),
+				     DLB_EVENT_PRIO_BYTE + 8);
+
+	/* Write the event type and sub event type to the event metadata. Leave
+	 * flow ID unspecified, since the hardware does not maintain it during
+	 * scheduling:
+	 * sse_evt[0][31:0]   = qes[0].u.event_type.major << 28 |
+	 *			qes[0].u.event_type.sub << 20;
+	 * sse_evt[0][95:64]  = qes[1].u.event_type.major << 28 |
+	 *			qes[1].u.event_type.sub << 20;
+	 * sse_evt[1][31:0]   = qes[2].u.event_type.major << 28 |
+	 *			qes[2].u.event_type.sub << 20;
+	 * sse_evt[1][95:64]  = qes[3].u.event_type.major << 28 |
+	 *			qes[3].u.event_type.sub << 20;
+	 */
+#define DLB_EVENT_EV_TYPE_DW 0
+#define DLB_EVENT_EV_TYPE_SHIFT 28
+#define DLB_EVENT_SUB_EV_TYPE_SHIFT 20
+	sse_evt[0] = _mm_insert_epi32(sse_evt[0],
+			qes[0].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+			qes[0].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+			DLB_EVENT_EV_TYPE_DW);
+	sse_evt[0] = _mm_insert_epi32(sse_evt[0],
+			qes[1].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+			qes[1].u.event_type.sub <<  DLB_EVENT_SUB_EV_TYPE_SHIFT,
+			DLB_EVENT_EV_TYPE_DW + 2);
+	sse_evt[1] = _mm_insert_epi32(sse_evt[1],
+			qes[2].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT |
+			qes[2].u.event_type.sub <<  DLB_EVENT_SUB_EV_TYPE_SHIFT,
+			DLB_EVENT_EV_TYPE_DW);
+	sse_evt[1] = _mm_insert_epi32(sse_evt[1],
+			qes[3].u.event_type.major << DLB_EVENT_EV_TYPE_SHIFT  |
+			qes[3].u.event_type.sub << DLB_EVENT_SUB_EV_TYPE_SHIFT,
+			DLB_EVENT_EV_TYPE_DW + 2);
+
+	/* Write the sched type to the event metadata. 'op' and 'rsvd' are not
+	 * set:
+	 * sse_evt[0][39:32]  = sched_type_map[qes[0].sched_type] << 6
+	 * sse_evt[0][103:96] = sched_type_map[qes[1].sched_type] << 6
+	 * sse_evt[1][39:32]  = sched_type_map[qes[2].sched_type] << 6
+	 * sse_evt[1][103:96] = sched_type_map[qes[3].sched_type] << 6
+	 */
+#define DLB_EVENT_SCHED_TYPE_BYTE 4
+#define DLB_EVENT_SCHED_TYPE_SHIFT 6
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+		sched_type_map[qes[0].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+		DLB_EVENT_SCHED_TYPE_BYTE);
+	sse_evt[0] = _mm_insert_epi8(sse_evt[0],
+		sched_type_map[qes[1].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+		DLB_EVENT_SCHED_TYPE_BYTE + 8);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+		sched_type_map[qes[2].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+		DLB_EVENT_SCHED_TYPE_BYTE);
+	sse_evt[1] = _mm_insert_epi8(sse_evt[1],
+		sched_type_map[qes[3].sched_type] << DLB_EVENT_SCHED_TYPE_SHIFT,
+		DLB_EVENT_SCHED_TYPE_BYTE + 8);
+
+	/* Store the metadata to the event (use the double-precision
+	 * _mm_storeh_pd because there is no integer function for storing the
+	 * upper 64b):
+	 * events[0].event = sse_evt[0][63:0]
+	 * events[1].event = sse_evt[0][127:64]
+	 * events[2].event = sse_evt[1][63:0]
+	 * events[3].event = sse_evt[1][127:64]
+	 */
+	_mm_storel_epi64((__m128i *)&events[0].event, sse_evt[0]);
+	_mm_storeh_pd((double *)&events[1].event, (__m128d) sse_evt[0]);
+	_mm_storel_epi64((__m128i *)&events[2].event, sse_evt[1]);
+	_mm_storeh_pd((double *)&events[3].event, (__m128d) sse_evt[1]);
+
+	DLB_INC_STAT(ev_port->stats.rx_sched_cnt[qes[0].sched_type], 1);
+	DLB_INC_STAT(ev_port->stats.rx_sched_cnt[qes[1].sched_type], 1);
+	DLB_INC_STAT(ev_port->stats.rx_sched_cnt[qes[2].sched_type], 1);
+	DLB_INC_STAT(ev_port->stats.rx_sched_cnt[qes[3].sched_type], 1);
+
+	DLB_INC_STAT(ev_port->stats.traffic.rx_ok, num_events);
+
+	return num_events;
+}
+
+static inline bool
+dlb_cq_is_empty(struct dlb_port *qm_port)
+{
+	volatile struct dlb_dequeue_qe *qe_ptr;
+	struct dlb_dequeue_qe qe;
+
+	qe_ptr = dlb_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+	qe = qe_ptr[qm_port->cq_idx];
+
+	return (qe.cq_gen != qm_port->gen_bit);
+}
+
+static inline int
+dlb_dequeue_wait(struct dlb_eventdev *dlb,
+		 struct dlb_eventdev_port *ev_port,
+		 struct dlb_port *qm_port,
+		 uint64_t timeout,
+		 uint64_t start_ticks)
+{
+	struct process_local_port_data *port_data;
+	uint64_t elapsed_ticks;
+
+	port_data = &dlb_port[qm_port->id][PORT_TYPE(qm_port)];
+
+	elapsed_ticks = rte_get_timer_cycles() - start_ticks;
+
+	/* Wait/poll time expired */
+	if (elapsed_ticks >= timeout) {
+		/* Interrupts not supported by PF PMD */
+		return 1;
+	} else if (dlb->umwait_allowed) {
+		volatile struct dlb_dequeue_qe *cq_base;
+		union {
+			uint64_t raw_qe[2];
+			struct dlb_dequeue_qe qe;
+		} qe_mask;
+		uint64_t expected_value;
+		volatile uint64_t *monitor_addr;
+
+		qe_mask.qe.cq_gen = 1; /* set mask */
+
+		cq_base = port_data->cq_base;
+		monitor_addr = (volatile uint64_t *)(volatile void *)
+			&cq_base[qm_port->cq_idx];
+		monitor_addr++; /* cq_gen bit is in second 64bit location */
+
+		if (qm_port->gen_bit)
+			expected_value = qe_mask.raw_qe[1];
+		else
+			expected_value = 0;
+
+		rte_power_monitor(monitor_addr, expected_value,
+				  qe_mask.raw_qe[1], timeout + start_ticks,
+				  sizeof(uint64_t));
+
+		DLB_INC_STAT(ev_port->stats.traffic.rx_umonitor_umwait, 1);
+	} else {
+		uint64_t poll_interval = RTE_LIBRTE_PMD_DLB_POLL_INTERVAL;
+		uint64_t curr_ticks = rte_get_timer_cycles();
+		uint64_t init_ticks = curr_ticks;
+
+		while ((curr_ticks - start_ticks < timeout) &&
+		       (curr_ticks - init_ticks < poll_interval))
+			curr_ticks = rte_get_timer_cycles();
+	}
+
+	return 0;
+}
+
+static inline int16_t
+dlb_hw_dequeue(struct dlb_eventdev *dlb,
+	       struct dlb_eventdev_port *ev_port,
+	       struct rte_event *events,
+	       uint16_t max_num,
+	       uint64_t dequeue_timeout_ticks)
+{
+	uint64_t timeout;
+	uint64_t start_ticks = 0ULL;
+	struct dlb_port *qm_port;
+	int num = 0;
+
+	qm_port = &ev_port->qm_port;
+
+	/* If configured for per dequeue wait, then use wait value provided
+	 * to this API. Otherwise we must use the global
+	 * value from eventdev config time.
+	 */
+	if (!dlb->global_dequeue_wait)
+		timeout = dequeue_timeout_ticks;
+	else
+		timeout = dlb->global_dequeue_wait_ticks;
+
+	if (timeout)
+		start_ticks = rte_get_timer_cycles();
+
+	while (num < max_num) {
+		struct dlb_dequeue_qe qes[DLB_NUM_QES_PER_CACHE_LINE];
+		uint8_t offset;
+		int num_avail;
+
+		/* Copy up to 4 QEs from the current cache line into qes */
+		num_avail = dlb_recv_qe(qm_port, qes, &offset);
+
+		/* But don't process more than the user requested */
+		num_avail = RTE_MIN(num_avail, max_num - num);
+
+		dlb_inc_cq_idx(qm_port, num_avail);
+
+		if (num_avail == DLB_NUM_QES_PER_CACHE_LINE)
+			num += dlb_process_dequeue_four_qes(ev_port,
+							     qm_port,
+							     &events[num],
+							     &qes[offset]);
+		else if (num_avail)
+			num += dlb_process_dequeue_qes(ev_port,
+							qm_port,
+							&events[num],
+							&qes[offset],
+							num_avail);
+		else if ((timeout == 0) || (num > 0))
+			/* Not waiting in any form, or 1+ events received? */
+			break;
+		else if (dlb_dequeue_wait(dlb, ev_port, qm_port,
+					  timeout, start_ticks))
+			break;
+	}
+
+	qm_port->owed_tokens += num;
+
+	dlb_consume_qe_immediate(qm_port, num);
+
+	ev_port->outstanding_releases += num;
+
+	return num;
+}
+
+static __rte_always_inline int
+dlb_recv_qe_sparse(struct dlb_port *qm_port, struct dlb_dequeue_qe *qe)
+{
+	volatile struct dlb_dequeue_qe *cq_addr;
+	uint8_t xor_mask[2] = {0x0F, 0x00};
+	const uint8_t and_mask = 0x0F;
+	__m128i *qes = (__m128i *)qe;
+	uint8_t gen_bits, gen_bit;
+	uintptr_t addr[4];
+	uint16_t idx;
+
+	cq_addr = dlb_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
+
+	idx = qm_port->cq_idx;
+
+	/* Load the next 4 QEs */
+	addr[0] = (uintptr_t)&cq_addr[idx];
+	addr[1] = (uintptr_t)&cq_addr[(idx +  4) & qm_port->cq_depth_mask];
+	addr[2] = (uintptr_t)&cq_addr[(idx +  8) & qm_port->cq_depth_mask];
+	addr[3] = (uintptr_t)&cq_addr[(idx + 12) & qm_port->cq_depth_mask];
+
+	/* Prefetch next batch of QEs (all CQs occupy minimum 8 cache lines) */
+	rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
+	rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
+	rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
+	rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
+
+	/* Correct the xor_mask for wrap-around QEs */
+	gen_bit = qm_port->gen_bit;
+	xor_mask[gen_bit] ^= !!((idx +  4) > qm_port->cq_depth_mask) << 1;
+	xor_mask[gen_bit] ^= !!((idx +  8) > qm_port->cq_depth_mask) << 2;
+	xor_mask[gen_bit] ^= !!((idx + 12) > qm_port->cq_depth_mask) << 3;
+
+	/* Read the cache lines backwards to ensure that if QE[N] (N > 0) is
+	 * valid, then QEs[0:N-1] are too.
+	 */
+	qes[3] = _mm_load_si128((__m128i *)(void *)addr[3]);
+	rte_compiler_barrier();
+	qes[2] = _mm_load_si128((__m128i *)(void *)addr[2]);
+	rte_compiler_barrier();
+	qes[1] = _mm_load_si128((__m128i *)(void *)addr[1]);
+	rte_compiler_barrier();
+	qes[0] = _mm_load_si128((__m128i *)(void *)addr[0]);
+
+	/* Extract and combine the gen bits */
+	gen_bits = ((_mm_extract_epi8(qes[0], 15) & 0x1) << 0) |
+		   ((_mm_extract_epi8(qes[1], 15) & 0x1) << 1) |
+		   ((_mm_extract_epi8(qes[2], 15) & 0x1) << 2) |
+		   ((_mm_extract_epi8(qes[3], 15) & 0x1) << 3);
+
+	/* XOR the combined bits such that a 1 represents a valid QE */
+	gen_bits ^= xor_mask[gen_bit];
+
+	/* Mask off gen bits we don't care about */
+	gen_bits &= and_mask;
+
+	return __builtin_popcount(gen_bits);
+}
+
+static inline int16_t
+dlb_hw_dequeue_sparse(struct dlb_eventdev *dlb,
+		      struct dlb_eventdev_port *ev_port,
+		      struct rte_event *events,
+		      uint16_t max_num,
+		      uint64_t dequeue_timeout_ticks)
+{
+	uint64_t timeout;
+	uint64_t start_ticks = 0ULL;
+	struct dlb_port *qm_port;
+	int num = 0;
+
+	qm_port = &ev_port->qm_port;
+
+	/* If configured for per dequeue wait, then use wait value provided
+	 * to this API. Otherwise we must use the global
+	 * value from eventdev config time.
+	 */
+	if (!dlb->global_dequeue_wait)
+		timeout = dequeue_timeout_ticks;
+	else
+		timeout = dlb->global_dequeue_wait_ticks;
+
+	if (timeout)
+		start_ticks = rte_get_timer_cycles();
+
+	while (num < max_num) {
+		struct dlb_dequeue_qe qes[DLB_NUM_QES_PER_CACHE_LINE];
+		int num_avail;
+
+		/* Copy up to 4 QEs from the current cache line into qes */
+		num_avail = dlb_recv_qe_sparse(qm_port, qes);
+
+		/* But don't process more than the user requested */
+		num_avail = RTE_MIN(num_avail, max_num - num);
+
+		dlb_inc_cq_idx(qm_port, num_avail << 2);
+
+		if (num_avail == DLB_NUM_QES_PER_CACHE_LINE)
+			num += dlb_process_dequeue_four_qes(ev_port,
+							     qm_port,
+							     &events[num],
+							     &qes[0]);
+		else if (num_avail)
+			num += dlb_process_dequeue_qes(ev_port,
+							qm_port,
+							&events[num],
+							&qes[0],
+							num_avail);
+		else if ((timeout == 0) || (num > 0))
+			/* Not waiting in any form, or 1+ events received? */
+			break;
+		else if (dlb_dequeue_wait(dlb, ev_port, qm_port,
+					  timeout, start_ticks))
+			break;
+	}
+
+	qm_port->owed_tokens += num;
+
+	dlb_consume_qe_immediate(qm_port, num);
+
+	ev_port->outstanding_releases += num;
+
+	return num;
+}
+
+static int
+dlb_event_release(struct dlb_eventdev *dlb, uint8_t port_id, int n)
+{
+	struct process_local_port_data *port_data;
+	struct dlb_eventdev_port *ev_port;
+	struct dlb_port *qm_port;
+	int i;
+
+	if (port_id > dlb->num_ports) {
+		DLB_LOG_ERR("Invalid port id %d in dlb-event_release\n",
+			    port_id);
+		rte_errno = -EINVAL;
+		return rte_errno;
+	}
+
+	ev_port = &dlb->ev_ports[port_id];
+	qm_port = &ev_port->qm_port;
+	port_data = &dlb_port[qm_port->id][PORT_TYPE(qm_port)];
+
+	i = 0;
+
+	if (qm_port->is_directed) {
+		i = n;
+		goto sw_credit_update;
+	}
+
+	while (i < n) {
+		int pop_offs = 0;
+		int j = 0;
+
+		/* Zero-out QEs */
+		qm_port->qe4[0].cmd_byte = 0;
+		qm_port->qe4[1].cmd_byte = 0;
+		qm_port->qe4[2].cmd_byte = 0;
+		qm_port->qe4[3].cmd_byte = 0;
+
+		for (; j < DLB_NUM_QES_PER_CACHE_LINE && (i + j) < n; j++) {
+
+			qm_port->qe4[j].cmd_byte = DLB_COMP_CMD_BYTE;
+			qm_port->issued_releases++;
+		}
+
+		dlb_hw_do_enqueue(qm_port, i == 0, port_data);
+
+		/* Don't include the token pop QE in the release count */
+		i += j - pop_offs;
+	}
+
+sw_credit_update:
+	/* each release returns one credit */
+	if (!ev_port->outstanding_releases) {
+		DLB_LOG_ERR("Unrecoverable application error. Outstanding releases underflowed.\n");
+		rte_errno = -ENOTRECOVERABLE;
+		return rte_errno;
+	}
+
+	ev_port->outstanding_releases -= i;
+	ev_port->inflight_credits += i;
+
+	/* Replenish s/w credits if enough releases are performed */
+	dlb_replenish_sw_credits(dlb, ev_port);
+	return 0;
+}
+
+static uint16_t
+dlb_event_dequeue_burst(void *event_port, struct rte_event *ev, uint16_t num,
+			uint64_t wait)
+{
+	struct dlb_eventdev_port *ev_port = event_port;
+	struct dlb_eventdev *dlb = ev_port->dlb;
+	uint16_t cnt;
+	int ret;
+
+	rte_errno = 0;
+
+	RTE_ASSERT(ev_port->setup_done);
+	RTE_ASSERT(ev != NULL);
+
+	if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
+		uint16_t out_rels = ev_port->outstanding_releases;
+
+		ret = dlb_event_release(dlb, ev_port->id, out_rels);
+		if (ret)
+			return(ret);
+
+		DLB_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
+	}
+
+	cnt = dlb_hw_dequeue(dlb, ev_port, ev, num, wait);
+
+	DLB_INC_STAT(ev_port->stats.traffic.total_polls, 1);
+	DLB_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
+	return cnt;
+}
+
+static uint16_t
+dlb_event_dequeue(void *event_port, struct rte_event *ev, uint64_t wait)
+{
+	return dlb_event_dequeue_burst(event_port, ev, 1, wait);
+}
+
+static uint16_t
+dlb_event_dequeue_burst_sparse(void *event_port, struct rte_event *ev,
+			       uint16_t num, uint64_t wait)
+{
+	struct dlb_eventdev_port *ev_port = event_port;
+	struct dlb_eventdev *dlb = ev_port->dlb;
+	uint16_t cnt;
+	int ret;
+
+	rte_errno = 0;
+
+	RTE_ASSERT(ev_port->setup_done);
+	RTE_ASSERT(ev != NULL);
+
+	if (ev_port->implicit_release && ev_port->outstanding_releases > 0) {
+		uint16_t out_rels = ev_port->outstanding_releases;
+
+		ret = dlb_event_release(dlb, ev_port->id, out_rels);
+		if (ret)
+			return(ret);
+
+		DLB_INC_STAT(ev_port->stats.tx_implicit_rel, out_rels);
+	}
+
+	cnt = dlb_hw_dequeue_sparse(dlb, ev_port, ev, num, wait);
+
+	DLB_INC_STAT(ev_port->stats.traffic.total_polls, 1);
+	DLB_INC_STAT(ev_port->stats.traffic.zero_polls, ((cnt == 0) ? 1 : 0));
+	return cnt;
+}
+
+static uint16_t
+dlb_event_dequeue_sparse(void *event_port, struct rte_event *ev, uint64_t wait)
+{
+	return dlb_event_dequeue_burst_sparse(event_port, ev, 1, wait);
+}
+
 void
 dlb_entry_points_init(struct rte_eventdev *dev)
 {
+	struct dlb_eventdev *dlb;
+
 	static struct rte_eventdev_ops dlb_eventdev_entry_ops = {
 		.dev_infos_get    = dlb_eventdev_info_get,
 		.dev_configure    = dlb_eventdev_configure,
@@ -2841,6 +3523,15 @@  dlb_entry_points_init(struct rte_eventdev *dev)
 	dev->enqueue_burst = dlb_event_enqueue_burst;
 	dev->enqueue_new_burst = dlb_event_enqueue_new_burst;
 	dev->enqueue_forward_burst = dlb_event_enqueue_forward_burst;
+	dev->dequeue = dlb_event_dequeue;
+	dev->dequeue_burst = dlb_event_dequeue_burst;
+
+	dlb = dev->data->dev_private;
+
+	if (dlb->poll_mode == DLB_CQ_POLL_MODE_SPARSE) {
+		dev->dequeue = dlb_event_dequeue_sparse;
+		dev->dequeue_burst = dlb_event_dequeue_burst_sparse;
+	}
 }
 
 int