From patchwork Thu Sep 19 08:44:55 2019 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Leyi Rong X-Patchwork-Id: 59379 X-Patchwork-Delegate: xiaolong.ye@intel.com Return-Path: X-Original-To: patchwork@dpdk.org Delivered-To: patchwork@dpdk.org Received: from [92.243.14.124] (localhost [127.0.0.1]) by dpdk.org (Postfix) with ESMTP id E3FFF1EA81; Thu, 19 Sep 2019 10:47:55 +0200 (CEST) Received: from mga07.intel.com (mga07.intel.com [134.134.136.100]) by dpdk.org (Postfix) with ESMTP id 699591EA79 for ; Thu, 19 Sep 2019 10:47:53 +0200 (CEST) X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from orsmga005.jf.intel.com ([10.7.209.41]) by orsmga105.jf.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 19 Sep 2019 01:47:52 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.64,522,1559545200"; d="scan'208";a="362453152" Received: from dpdk-lrong-srv-04.sh.intel.com ([10.67.119.187]) by orsmga005.jf.intel.com with ESMTP; 19 Sep 2019 01:47:50 -0700 From: Leyi Rong To: wenzhuo.lu@intel.com, qi.z.zhang@intel.com, xiaolong.ye@intel.com Cc: dev@dpdk.org, Leyi Rong Date: Thu, 19 Sep 2019 16:44:55 +0800 Message-Id: <20190919084455.80907-1-leyi.rong@intel.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20190904100617.110676-1-leyi.rong@intel.com> References: <20190904100617.110676-1-leyi.rong@intel.com> Subject: [dpdk-dev] [PATCH v3] net/iavf: enable AVX2 for iavf X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dev-bounces@dpdk.org Sender: "dev" This patch enables AVX data path for iavf PMD. Signed-off-by: Leyi Rong --- v3: - Adds release note. v2: - fix build error on aarch64. --- doc/guides/rel_notes/release_19_11.rst | 3 + drivers/net/iavf/Makefile | 21 + drivers/net/iavf/iavf_rxtx.c | 99 +-- drivers/net/iavf/iavf_rxtx.h | 12 + drivers/net/iavf/iavf_rxtx_vec_avx2.c | 867 ++++++++++++++++++++++++ drivers/net/iavf/iavf_rxtx_vec_common.h | 72 ++ drivers/net/iavf/iavf_rxtx_vec_sse.c | 33 + drivers/net/iavf/meson.build | 17 + 8 files changed, 1078 insertions(+), 46 deletions(-) create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c diff --git a/doc/guides/rel_notes/release_19_11.rst b/doc/guides/rel_notes/release_19_11.rst index 8490d897c..e4e29e219 100644 --- a/doc/guides/rel_notes/release_19_11.rst +++ b/doc/guides/rel_notes/release_19_11.rst @@ -56,6 +56,9 @@ New Features Also, make sure to start the actual text at the margin. ========================================================= +* **Updated iavf PMD.** + + Enabled AVX2 data path for iavf PMD. Removed Items ------------- diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile index cd74e14ab..cf0ed99f0 100644 --- a/drivers/net/iavf/Makefile +++ b/drivers/net/iavf/Makefile @@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y) SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c endif +ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y) + ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2) + CC_AVX2_SUPPORT=1 + else + CC_AVX2_SUPPORT=\ + $(shell $(CC) -march=core-avx2 -dM -E - &1 | \ + grep -q AVX2 && echo 1) + ifeq ($(CC_AVX2_SUPPORT), 1) + ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y) + CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2 + else + CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2 + endif + endif + endif +endif + +ifeq ($(CC_AVX2_SUPPORT), 1) + SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c +endif + include $(RTE_SDK)/mk/rte.lib.mk diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c index 22d7bb612..e36f035c5 100644 --- a/drivers/net/iavf/iavf_rxtx.c +++ b/drivers/net/iavf/iavf_rxtx.c @@ -1666,27 +1666,6 @@ iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) return nb_tx; } -static uint16_t -iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts) -{ - uint16_t nb_tx = 0; - struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; - - while (nb_pkts) { - uint16_t ret, num; - - num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); - ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num); - nb_tx += ret; - nb_pkts -= ret; - if (ret < num) - break; - } - - return nb_tx; -} - /* TX prep functions */ uint16_t iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, @@ -1741,26 +1720,43 @@ iavf_set_rx_function(struct rte_eth_dev *dev) { struct iavf_adapter *adapter = IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); +#ifdef RTE_ARCH_X86 struct iavf_rx_queue *rxq; int i; + bool use_avx2 = false; - if (adapter->rx_vec_allowed) { - if (dev->data->scattered_rx) { - PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback" - " (port=%d).", dev->data->port_id); - dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec; - } else { - PMD_DRV_LOG(DEBUG, "Using Vector Rx callback" - " (port=%d).", dev->data->port_id); - dev->rx_pkt_burst = iavf_recv_pkts_vec; - } + if (!iavf_rx_vec_dev_check(dev)) { for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; - if (!rxq) - continue; - iavf_rxq_vec_setup(rxq); + (void)iavf_rxq_vec_setup(rxq); } - } else if (dev->data->scattered_rx) { + + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) + use_avx2 = true; + + if (dev->data->scattered_rx) { + PMD_DRV_LOG(DEBUG, + "Using %sVector Scattered Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_scattered_pkts_vec_avx2 : + iavf_recv_scattered_pkts_vec; + } else { + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_pkts_vec_avx2 : + iavf_recv_pkts_vec; + } + + return; + } +#endif + + if (dev->data->scattered_rx) { PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).", dev->data->port_id); dev->rx_pkt_burst = iavf_recv_scattered_pkts; @@ -1779,28 +1775,39 @@ iavf_set_rx_function(struct rte_eth_dev *dev) void iavf_set_tx_function(struct rte_eth_dev *dev) { - struct iavf_adapter *adapter = - IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); +#ifdef RTE_ARCH_X86 struct iavf_tx_queue *txq; int i; + bool use_avx2 = false; - if (adapter->tx_vec_allowed) { - PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).", - dev->data->port_id); - dev->tx_pkt_burst = iavf_xmit_pkts_vec; - dev->tx_pkt_prepare = NULL; + if (!iavf_tx_vec_dev_check(dev)) { for (i = 0; i < dev->data->nb_tx_queues; i++) { txq = dev->data->tx_queues[i]; if (!txq) continue; iavf_txq_vec_setup(txq); } - } else { - PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).", + + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) + use_avx2 = true; + + PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).", + use_avx2 ? "avx2 " : "", dev->data->port_id); - dev->tx_pkt_burst = iavf_xmit_pkts; - dev->tx_pkt_prepare = iavf_prep_pkts; + dev->tx_pkt_burst = use_avx2 ? + iavf_xmit_pkts_vec_avx2 : + iavf_xmit_pkts_vec; + dev->tx_pkt_prepare = NULL; + + return; } +#endif + + PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).", + dev->data->port_id); + dev->tx_pkt_burst = iavf_xmit_pkts; + dev->tx_pkt_prepare = iavf_prep_pkts; } void diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h index c86720bda..225a0c4c4 100644 --- a/drivers/net/iavf/iavf_rxtx.h +++ b/drivers/net/iavf/iavf_rxtx.h @@ -19,6 +19,7 @@ /* used for Vector PMD */ #define IAVF_VPMD_RX_MAX_BURST 32 #define IAVF_VPMD_TX_MAX_BURST 32 +#define IAVF_RXQ_REARM_THRESH 32 #define IAVF_VPMD_DESCS_PER_LOOP 4 #define IAVF_VPMD_TX_MAX_FREE_BUF 64 @@ -200,6 +201,17 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue, uint16_t nb_pkts); uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); +uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); +uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); +uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); +uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); +int iavf_rx_vec_dev_check(struct rte_eth_dev *dev); +int iavf_tx_vec_dev_check(struct rte_eth_dev *dev); int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq); int iavf_txq_vec_setup(struct iavf_tx_queue *txq); diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c new file mode 100644 index 000000000..f0c00be56 --- /dev/null +++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c @@ -0,0 +1,867 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2019 Intel Corporation + */ + +#include "base/iavf_prototype.h" +#include "iavf_rxtx_vec_common.h" + +#include + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +static inline void +iavf_rxq_rearm(struct iavf_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union iavf_rx_desc *rxdp; + struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp = rxq->rx_ring + rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxp, + IAVF_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) { + rxp[i] = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += + IAVF_RXQ_REARM_THRESH; + return; + } + +#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxp[0]; + mb1 = rxp[1]; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } +#else + struct rte_mbuf *mb0, *mb1, *mb2, *mb3; + __m256i dma_addr0_1, dma_addr2_3; + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 4 mbufs in one loop */ + for (i = 0; i < IAVF_RXQ_REARM_THRESH; + i += 4, rxp += 4, rxdp += 4) { + __m128i vaddr0, vaddr1, vaddr2, vaddr3; + __m256i vaddr0_1, vaddr2_3; + + mb0 = rxp[0]; + mb1 = rxp[1]; + mb2 = rxp[2]; + mb3 = rxp[3]; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); + + /** + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 + * into the high lanes. Similarly for 2 & 3 + */ + vaddr0_1 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), + vaddr1, 1); + vaddr2_3 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), + vaddr3, 1); + + /* convert pa to dma_addr hdr/data */ + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); + + /* add headroom to pa values */ + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); + + /* flush desc with pa dma_addr */ + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); + } + +#endif + + rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +#define PKTLEN_SHIFT 10 + +static inline uint16_t +_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define IAVF_DESCS_PER_LOOP_AVX 8 + + /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */ + static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = { + /* [0] reserved */ + [1] = RTE_PTYPE_L2_ETHER, + /* [2] - [21] reserved */ + [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_FRAG, + [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_NONFRAG, + [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_UDP, + /* [25] reserved */ + [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_TCP, + [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_SCTP, + [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | + RTE_PTYPE_L4_ICMP, + /* All others reserved */ + }; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */ + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) + iavf_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.qword1.status_error_len & + rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT))) + return 0; + + /* constants used in processing loop */ + const __m256i crc_adjust = + _mm256_set_epi16 + (/* first descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0, /* ignore pkt_type field */ + /* second descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0 /* ignore pkt_type field */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + IAVF_RX_DESC_STATUS_EOF_SHIFT); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = + _mm256_set1_epi32((1 << 2) | (1 << 11) | + (3 << 12) | (7 << 22)); + /** + * data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); + /** + * data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0); + + /** + * data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += IAVF_DESCS_PER_LOOP_AVX, + rxdp += IAVF_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; +#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC + /* for AVX we need alignment otherwise loads are not atomic */ + if (avx_aligned) { + /* load in descriptors, 2 at a time, in reverse order */ + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); + rte_compiler_barrier(); + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); + rte_compiler_barrier(); + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); + rte_compiler_barrier(); + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); + } else +#endif + { + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + } + + if (split_packet) { + int j; + + for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, + PKTLEN_SHIFT); + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, + PKTLEN_SHIFT); + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, + len6_7, 0x80); + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, + len4_5, 0x80); + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); + + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); + /** + * to get packet types, shift 64-bit values down 30 bits + * and so ptype is in lower 8-bits in each + */ + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); + + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, + desc4_5); + + /** + * convert descriptors 0-3 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, + PKTLEN_SHIFT); + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, + PKTLEN_SHIFT); + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, + len2_3, 0x80); + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, + len0_1, 0x80); + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); + + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); + /* get the packet types */ + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); + + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, + desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /* set vlan and rss flags */ + const __m256i vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); + const __m256i rss_flags = + _mm256_shuffle_epi8(rss_flags_shuf, + _mm256_srli_epi32(flag_bits, 11)); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + + /* merge flags */ + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + _mm256_or_si256(rss_flags, vlan_flags)); + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += IAVF_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != IAVF_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} + +/** + * vPMD receive routine that reassembles single burst of 32 scattered packets + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static uint16_t +iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct iavf_rx_queue *rxq = rx_queue; + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts, + split_flags); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (!rxq->pkt_first_seg && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (!rxq->pkt_first_seg) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/** + * vPMD receive routine that reassembles scattered packets. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t retval = 0; + + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { + uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue, + rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); + retval += burst; + nb_pkts -= burst; + if (burst < IAVF_VPMD_RX_MAX_BURST) + return retval; + } + return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue, + rx_pkts + retval, nb_pkts); +} + +static inline void +iavf_vtx1(volatile struct iavf_tx_desc *txdp, + struct rte_mbuf *pkt, uint64_t flags) +{ + uint64_t high_qw = + (IAVF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) | + ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT)); + + __m128i descriptor = _mm_set_epi64x(high_qw, + pkt->buf_physaddr + pkt->data_off); + _mm_store_si128((__m128i *)txdp, descriptor); +} + +static inline void +iavf_vtx(volatile struct iavf_tx_desc *txdp, + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) +{ + const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT)); + + /* if unaligned on 32-bit boundary, do one to align */ + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { + iavf_vtx1(txdp, *pkt, flags); + nb_pkts--, txdp++, pkt++; + } + + /* do two at a time while possible, in bursts */ + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { + uint64_t hi_qw3 = + hi_qw_tmpl | + ((uint64_t)pkt[3]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw2 = + hi_qw_tmpl | + ((uint64_t)pkt[2]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw1 = + hi_qw_tmpl | + ((uint64_t)pkt[1]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw0 = + hi_qw_tmpl | + ((uint64_t)pkt[0]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + + __m256i desc2_3 = + _mm256_set_epi64x + (hi_qw3, + pkt[3]->buf_physaddr + pkt[3]->data_off, + hi_qw2, + pkt[2]->buf_physaddr + pkt[2]->data_off); + __m256i desc0_1 = + _mm256_set_epi64x + (hi_qw1, + pkt[1]->buf_physaddr + pkt[1]->data_off, + hi_qw0, + pkt[0]->buf_physaddr + pkt[0]->data_off); + _mm256_store_si256((void *)(txdp + 2), desc2_3); + _mm256_store_si256((void *)txdp, desc0_1); + } + + /* do any last ones */ + while (nb_pkts) { + iavf_vtx1(txdp, *pkt, flags); + txdp++, pkt++, nb_pkts--; + } +} + +static inline uint16_t +iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; + volatile struct iavf_tx_desc *txdp; + struct iavf_tx_entry *txep; + uint16_t n, nb_commit, tx_id; + uint64_t flags = IAVF_TX_DESC_CMD_EOP; + uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP; + + /* cross rx_thresh boundary is not allowed */ + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); + + if (txq->nb_free < txq->free_thresh) + iavf_tx_free_bufs(txq); + + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); + if (unlikely(nb_pkts == 0)) + return 0; + + tx_id = txq->tx_tail; + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); + + n = (uint16_t)(txq->nb_tx_desc - tx_id); + if (nb_commit >= n) { + tx_backlog_entry(txep, tx_pkts, n); + + iavf_vtx(txdp, tx_pkts, n - 1, flags); + tx_pkts += (n - 1); + txdp += (n - 1); + + iavf_vtx1(txdp, *tx_pkts++, rs); + + nb_commit = (uint16_t)(nb_commit - n); + + tx_id = 0; + txq->next_rs = (uint16_t)(txq->rs_thresh - 1); + + /* avoid reach the end of ring */ + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + } + + tx_backlog_entry(txep, tx_pkts, nb_commit); + + iavf_vtx(txdp, tx_pkts, nb_commit, flags); + + tx_id = (uint16_t)(tx_id + nb_commit); + if (tx_id > txq->next_rs) { + txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) << + IAVF_TXD_QW1_CMD_SHIFT); + txq->next_rs = + (uint16_t)(txq->next_rs + txq->rs_thresh); + } + + txq->tx_tail = tx_id; + + IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); + + return nb_pkts; +} + +uint16_t +iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_tx = 0; + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; + + while (nb_pkts) { + uint16_t ret, num; + + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); + ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx], + num); + nb_tx += ret; + nb_pkts -= ret; + if (ret < num) + break; + } + + return nb_tx; +} diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h b/drivers/net/iavf/iavf_rxtx_vec_common.h index db509d71f..fff0555d2 100644 --- a/drivers/net/iavf/iavf_rxtx_vec_common.h +++ b/drivers/net/iavf/iavf_rxtx_vec_common.h @@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq) rxq->mbuf_initializer = *(uint64_t *)p; return 0; } + +static inline int +iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq) +{ + if (!rxq) + return -1; + + if (!rte_is_power_of_2(rxq->nb_rx_desc)) + return -1; + + if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST) + return -1; + + if (rxq->nb_rx_desc % rxq->rx_free_thresh) + return -1; + + return 0; +} + +#define IAVF_NO_VECTOR_FLAGS ( \ + DEV_TX_OFFLOAD_MULTI_SEGS | \ + DEV_TX_OFFLOAD_VLAN_INSERT | \ + DEV_TX_OFFLOAD_SCTP_CKSUM | \ + DEV_TX_OFFLOAD_UDP_CKSUM | \ + DEV_TX_OFFLOAD_TCP_CKSUM) + +static inline int +iavf_tx_vec_queue_default(struct iavf_tx_queue *txq) +{ + if (!txq) + return -1; + + if (txq->offloads & IAVF_NO_VECTOR_FLAGS) + return -1; + + if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST || + txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF) + return -1; + + return 0; +} + +static inline int +iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev) +{ + int i; + struct iavf_rx_queue *rxq; + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + if (iavf_rx_vec_queue_default(rxq)) + return -1; + } + + return 0; +} + +static inline int +iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev) +{ + int i; + struct iavf_tx_queue *txq; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + if (iavf_tx_vec_queue_default(txq)) + return -1; + } + + return 0; +} + #endif diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c b/drivers/net/iavf/iavf_rxtx_vec_sse.c index cc71f23a5..2b16dc1b5 100644 --- a/drivers/net/iavf/iavf_rxtx_vec_sse.c +++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c @@ -622,6 +622,27 @@ iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, return nb_pkts; } +uint16_t +iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_tx = 0; + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; + + while (nb_pkts) { + uint16_t ret, num; + + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); + ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num); + nb_tx += ret; + nb_pkts -= ret; + if (ret < num) + break; + } + + return nb_tx; +} + static void __attribute__((cold)) iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq) { @@ -655,3 +676,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq) rxq->ops = &sse_vec_rxq_ops; return iavf_rxq_vec_setup_default(rxq); } + +int __attribute__((cold)) +iavf_rx_vec_dev_check(struct rte_eth_dev *dev) +{ + return iavf_rx_vec_dev_check_default(dev); +} + +int __attribute__((cold)) +iavf_tx_vec_dev_check(struct rte_eth_dev *dev) +{ + return iavf_tx_vec_dev_check_default(dev); +} diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build index e5a2f5553..c2401af86 100644 --- a/drivers/net/iavf/meson.build +++ b/drivers/net/iavf/meson.build @@ -17,4 +17,21 @@ sources = files( if arch_subdir == 'x86' dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1) sources += files('iavf_rxtx_vec_sse.c') + + # compile AVX2 version if either: + # a. we have AVX supported in minimum instruction set baseline + # b. it's not minimum instruction set, but supported by compiler + if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2') + cflags += ['-DCC_AVX2_SUPPORT'] + sources += files('iavf_rxtx_vec_avx2.c') + elif cc.has_argument('-mavx2') + cflags += ['-DCC_AVX2_SUPPORT'] + iavf_avx2_lib = static_library('iavf_avx2_lib', + 'iavf_rxtx_vec_avx2.c', + dependencies: [static_rte_ethdev, + static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: [cflags, '-mavx2']) + objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c') + endif endif