[v6,4/5] ethdev: format module EEPROM for SFF-8472

Message ID 20220511021442.811950-5-robinx.zhang@intel.com (mailing list archive)
State Changes Requested, archived
Delegated to: Andrew Rybchenko
Headers
Series add telemetry command for show module EEPROM |

Checks

Context Check Description
ci/checkpatch success coding style OK

Commit Message

Robin Zhang May 11, 2022, 2:14 a.m. UTC
  This patch implements format module EEPROM information for
SFF-8472 Rev 12.0

Signed-off-by: Robin Zhang <robinx.zhang@intel.com>
---
 lib/ethdev/ethdev_sff_telemetry.c |   4 +
 lib/ethdev/meson.build            |   1 +
 lib/ethdev/sff_8472.c             | 287 ++++++++++++++++++++++++++++++
 3 files changed, 292 insertions(+)
 create mode 100644 lib/ethdev/sff_8472.c
  

Comments

Andrew Rybchenko May 19, 2022, 8:33 a.m. UTC | #1
On 5/11/22 05:14, Robin Zhang wrote:
> This patch implements format module EEPROM information for
> SFF-8472 Rev 12.0
> 
> Signed-off-by: Robin Zhang <robinx.zhang@intel.com>

[snip]
> diff --git a/lib/ethdev/sff_8472.c b/lib/ethdev/sff_8472.c
> new file mode 100644
> index 0000000000..1bbabbde1a
> --- /dev/null
> +++ b/lib/ethdev/sff_8472.c
> @@ -0,0 +1,287 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2022 Intel Corporation
> + *
> + * Implements SFF-8472 optics diagnostics.
> + *
> + */
> +
> +#include <stdio.h>
> +#include <math.h>
> +#include <arpa/inet.h>

The patch still breaks Windows build because of the above
header [1] and [2]. Including mingw build.

[snip]

[1] http://mails.dpdk.org/archives/test-report/2022-May/279975.html
[2] http://mails.dpdk.org/archives/test-report/2022-May/279929.html
  

Patch

diff --git a/lib/ethdev/ethdev_sff_telemetry.c b/lib/ethdev/ethdev_sff_telemetry.c
index 63b0d21786..c3b13b1cb1 100644
--- a/lib/ethdev/ethdev_sff_telemetry.c
+++ b/lib/ethdev/ethdev_sff_telemetry.c
@@ -73,6 +73,10 @@  sff_port_module_eeprom_parse(uint16_t port_id, struct rte_tel_data *d)
 	case RTE_ETH_MODULE_SFF_8079:
 		sff_8079_show_all(einfo.data, d);
 		break;
+	case RTE_ETH_MODULE_SFF_8472:
+		sff_8079_show_all(einfo.data, d);
+		sff_8472_show_all(einfo.data, d);
+		break;
 	default:
 		RTE_ETHDEV_LOG(NOTICE, "Unsupported module type: %u\n", minfo.type);
 		break;
diff --git a/lib/ethdev/meson.build b/lib/ethdev/meson.build
index d94860da0c..4d81a35c09 100644
--- a/lib/ethdev/meson.build
+++ b/lib/ethdev/meson.build
@@ -14,6 +14,7 @@  sources = files(
         'ethdev_sff_telemetry.c',
         'sff_common.c',
         'sff_8079.c',
+        'sff_8472.c',
 )
 
 headers = files(
diff --git a/lib/ethdev/sff_8472.c b/lib/ethdev/sff_8472.c
new file mode 100644
index 0000000000..1bbabbde1a
--- /dev/null
+++ b/lib/ethdev/sff_8472.c
@@ -0,0 +1,287 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ *
+ * Implements SFF-8472 optics diagnostics.
+ *
+ */
+
+#include <stdio.h>
+#include <math.h>
+#include <arpa/inet.h>
+#include <rte_mbuf.h>
+#include <rte_ethdev.h>
+#include <rte_flow.h>
+#include "sff_common.h"
+#include "ethdev_sff_telemetry.h"
+
+/* Offsets in decimal, for direct comparison with the SFF specs */
+
+/* A0-based EEPROM offsets for DOM support checks */
+#define SFF_A0_DOM                        92
+#define SFF_A0_OPTIONS                    93
+#define SFF_A0_COMP                       94
+
+/* EEPROM bit values for various registers */
+#define SFF_A0_DOM_EXTCAL                 (1 << 4)
+#define SFF_A0_DOM_INTCAL                 (1 << 5)
+#define SFF_A0_DOM_IMPL                   (1 << 6)
+#define SFF_A0_DOM_PWRT                   (1 << 3)
+
+#define SFF_A0_OPTIONS_AW                 (1 << 7)
+
+/*
+ * This is the offset at which the A2 page is in the EEPROM
+ * blob returned by the kernel.
+ */
+#define SFF_A2_BASE                       0x100
+
+/* A2-based offsets for DOM */
+#define SFF_A2_TEMP                       96
+#define SFF_A2_TEMP_HALRM                 0
+#define SFF_A2_TEMP_LALRM                 2
+#define SFF_A2_TEMP_HWARN                 4
+#define SFF_A2_TEMP_LWARN                 6
+
+#define SFF_A2_VCC                        98
+#define SFF_A2_VCC_HALRM                  8
+#define SFF_A2_VCC_LALRM                  10
+#define SFF_A2_VCC_HWARN                  12
+#define SFF_A2_VCC_LWARN                  14
+
+#define SFF_A2_BIAS                       100
+#define SFF_A2_BIAS_HALRM                 16
+#define SFF_A2_BIAS_LALRM                 18
+#define SFF_A2_BIAS_HWARN                 20
+#define SFF_A2_BIAS_LWARN                 22
+
+#define SFF_A2_TX_PWR                     102
+#define SFF_A2_TX_PWR_HALRM               24
+#define SFF_A2_TX_PWR_LALRM               26
+#define SFF_A2_TX_PWR_HWARN               28
+#define SFF_A2_TX_PWR_LWARN               30
+
+#define SFF_A2_RX_PWR                     104
+#define SFF_A2_RX_PWR_HALRM               32
+#define SFF_A2_RX_PWR_LALRM               34
+#define SFF_A2_RX_PWR_HWARN               36
+#define SFF_A2_RX_PWR_LWARN               38
+
+#define SFF_A2_ALRM_FLG                   112
+#define SFF_A2_WARN_FLG                   116
+
+/* 32-bit little-endian calibration constants */
+#define SFF_A2_CAL_RXPWR4                 56
+#define SFF_A2_CAL_RXPWR3                 60
+#define SFF_A2_CAL_RXPWR2                 64
+#define SFF_A2_CAL_RXPWR1                 68
+#define SFF_A2_CAL_RXPWR0                 72
+
+/* 16-bit little endian calibration constants */
+#define SFF_A2_CAL_TXI_SLP                76
+#define SFF_A2_CAL_TXI_OFF                78
+#define SFF_A2_CAL_TXPWR_SLP              80
+#define SFF_A2_CAL_TXPWR_OFF              82
+#define SFF_A2_CAL_T_SLP                  84
+#define SFF_A2_CAL_T_OFF                  86
+#define SFF_A2_CAL_V_SLP                  88
+#define SFF_A2_CAL_V_OFF                  90
+
+static struct sff_8472_aw_flags {
+	const char *str;        /* Human-readable string, null at the end */
+	int offset;             /* A2-relative address offset */
+	uint8_t value;          /* Alarm is on if (offset & value) != 0. */
+} sff_8472_aw_flags[] = {
+	{ "Laser bias current high alarm",   SFF_A2_ALRM_FLG, (1 << 3) },
+	{ "Laser bias current low alarm",    SFF_A2_ALRM_FLG, (1 << 2) },
+	{ "Laser bias current high warning", SFF_A2_WARN_FLG, (1 << 3) },
+	{ "Laser bias current low warning",  SFF_A2_WARN_FLG, (1 << 2) },
+
+	{ "Laser output power high alarm",   SFF_A2_ALRM_FLG, (1 << 1) },
+	{ "Laser output power low alarm",    SFF_A2_ALRM_FLG, (1 << 0) },
+	{ "Laser output power high warning", SFF_A2_WARN_FLG, (1 << 1) },
+	{ "Laser output power low warning",  SFF_A2_WARN_FLG, (1 << 0) },
+
+	{ "Module temperature high alarm",   SFF_A2_ALRM_FLG, (1 << 7) },
+	{ "Module temperature low alarm",    SFF_A2_ALRM_FLG, (1 << 6) },
+	{ "Module temperature high warning", SFF_A2_WARN_FLG, (1 << 7) },
+	{ "Module temperature low warning",  SFF_A2_WARN_FLG, (1 << 6) },
+
+	{ "Module voltage high alarm",   SFF_A2_ALRM_FLG, (1 << 5) },
+	{ "Module voltage low alarm",    SFF_A2_ALRM_FLG, (1 << 4) },
+	{ "Module voltage high warning", SFF_A2_WARN_FLG, (1 << 5) },
+	{ "Module voltage low warning",  SFF_A2_WARN_FLG, (1 << 4) },
+
+	{ "Laser rx power high alarm",   SFF_A2_ALRM_FLG + 1, (1 << 7) },
+	{ "Laser rx power low alarm",    SFF_A2_ALRM_FLG + 1, (1 << 6) },
+	{ "Laser rx power high warning", SFF_A2_WARN_FLG + 1, (1 << 7) },
+	{ "Laser rx power low warning",  SFF_A2_WARN_FLG + 1, (1 << 6) },
+
+	{ NULL, 0, 0 },
+};
+
+/* Most common case: 16-bit unsigned integer in a certain unit */
+#define A2_OFFSET_TO_U16(offset) \
+	(data[SFF_A2_BASE + (offset)] << 8 | data[SFF_A2_BASE + (offset) + 1])
+
+/* Calibration slope is a number between 0.0 included and 256.0 excluded. */
+#define A2_OFFSET_TO_SLP(offset) \
+	(data[SFF_A2_BASE + (offset)] + data[SFF_A2_BASE + (offset) + 1] / 256.)
+
+/* Calibration offset is an integer from -32768 to 32767 */
+#define A2_OFFSET_TO_OFF(offset) \
+	((int16_t)A2_OFFSET_TO_U16(offset))
+
+/* RXPWR(x) are IEEE-754 floating point numbers in big-endian format */
+#define A2_OFFSET_TO_RXPWRx(offset) \
+	(befloattoh((const uint32_t *)(data + SFF_A2_BASE + (offset))))
+
+/*
+ * 2-byte internal temperature conversions:
+ * First byte is a signed 8-bit integer, which is the temp decimal part
+ * Second byte are 1/256th of degree, which are added to the dec part.
+ */
+#define A2_OFFSET_TO_TEMP(offset) ((int16_t)A2_OFFSET_TO_U16(offset))
+
+static void sff_8472_dom_parse(const uint8_t *data, struct sff_diags *sd)
+{
+	sd->bias_cur[MCURR] = A2_OFFSET_TO_U16(SFF_A2_BIAS);
+	sd->bias_cur[HALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HALRM);
+	sd->bias_cur[LALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LALRM);
+	sd->bias_cur[HWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HWARN);
+	sd->bias_cur[LWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LWARN);
+
+	sd->sfp_voltage[MCURR] = A2_OFFSET_TO_U16(SFF_A2_VCC);
+	sd->sfp_voltage[HALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_HALRM);
+	sd->sfp_voltage[LALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_LALRM);
+	sd->sfp_voltage[HWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_HWARN);
+	sd->sfp_voltage[LWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_LWARN);
+
+	sd->tx_power[MCURR] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR);
+	sd->tx_power[HALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HALRM);
+	sd->tx_power[LALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LALRM);
+	sd->tx_power[HWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HWARN);
+	sd->tx_power[LWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LWARN);
+
+	sd->rx_power[MCURR] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR);
+	sd->rx_power[HALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HALRM);
+	sd->rx_power[LALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LALRM);
+	sd->rx_power[HWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HWARN);
+	sd->rx_power[LWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LWARN);
+
+	sd->sfp_temp[MCURR] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP);
+	sd->sfp_temp[HALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HALRM);
+	sd->sfp_temp[LALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LALRM);
+	sd->sfp_temp[HWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HWARN);
+	sd->sfp_temp[LWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LWARN);
+}
+
+/* Converts to a float from a big-endian 4-byte source buffer. */
+static float befloattoh(const uint32_t *source)
+{
+	union {
+		uint32_t src;
+		float dst;
+	} converter;
+
+	converter.src = ntohl(*source);
+	return converter.dst;
+}
+
+static void sff_8472_calibration(const uint8_t *data, struct sff_diags *sd)
+{
+	unsigned long i;
+	uint16_t rx_reading;
+
+	/* Calibration should occur for all values (threshold and current) */
+	for (i = 0; i < RTE_DIM(sd->bias_cur); ++i) {
+		/*
+		 * Apply calibration formula 1 (Temp., Voltage, Bias, Tx Power)
+		 */
+		sd->bias_cur[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXI_SLP);
+		sd->tx_power[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXPWR_SLP);
+		sd->sfp_voltage[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_V_SLP);
+		sd->sfp_temp[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_T_SLP);
+
+		sd->bias_cur[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXI_OFF);
+		sd->tx_power[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXPWR_OFF);
+		sd->sfp_voltage[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_V_OFF);
+		sd->sfp_temp[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_T_OFF);
+
+		/*
+		 * Apply calibration formula 2 (Rx Power only)
+		 */
+		rx_reading = sd->rx_power[i];
+		sd->rx_power[i]    = A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR0);
+		sd->rx_power[i]    += rx_reading *
+			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR1);
+		sd->rx_power[i]    += rx_reading *
+			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR2);
+		sd->rx_power[i]    += rx_reading *
+			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR3);
+	}
+}
+
+static void sff_8472_parse_eeprom(const uint8_t *data, struct sff_diags *sd)
+{
+	sd->supports_dom = data[SFF_A0_DOM] & SFF_A0_DOM_IMPL;
+	sd->supports_alarms = data[SFF_A0_OPTIONS] & SFF_A0_OPTIONS_AW;
+	sd->calibrated_ext = data[SFF_A0_DOM] & SFF_A0_DOM_EXTCAL;
+	sd->rx_power_type = data[SFF_A0_DOM] & SFF_A0_DOM_PWRT;
+
+	sff_8472_dom_parse(data, sd);
+
+	/*
+	 * If the SFP is externally calibrated, we need to read calibration data
+	 * and compensate the already stored readings.
+	 */
+	if (sd->calibrated_ext)
+		sff_8472_calibration(data, sd);
+}
+
+void sff_8472_show_all(const uint8_t *data, struct rte_tel_data *d)
+{
+	struct sff_diags sd = {0};
+	const char *rx_power_string = NULL;
+	char val_string[SFF_ITEM_VAL_COMPOSE_SIZE];
+	int i;
+
+	sff_8472_parse_eeprom(data, &sd);
+
+	if (!sd.supports_dom) {
+		ssf_add_dict_string(d, "Optical diagnostics support", "No");
+		return;
+	}
+	ssf_add_dict_string(d, "Optical diagnostics support", "Yes");
+
+	SPRINT_BIAS(val_string, sd.bias_cur[MCURR]);
+	ssf_add_dict_string(d, "Laser bias current", val_string);
+
+	SPRINT_xX_PWR(val_string, sd.tx_power[MCURR]);
+	ssf_add_dict_string(d, "Laser output power", val_string);
+
+	if (!sd.rx_power_type)
+		rx_power_string = "Receiver signal OMA";
+	else
+		rx_power_string = "Receiver signal average optical power";
+
+	SPRINT_xX_PWR(val_string, sd.rx_power[MCURR]);
+	ssf_add_dict_string(d, rx_power_string, val_string);
+
+	SPRINT_TEMP(val_string, sd.sfp_temp[MCURR]);
+	ssf_add_dict_string(d, "Module temperature", val_string);
+
+	SPRINT_VCC(val_string, sd.sfp_voltage[MCURR]);
+	ssf_add_dict_string(d, "Module voltage", val_string);
+
+	ssf_add_dict_string(d, "Alarm/warning flags implemented",
+			(sd.supports_alarms ? "Yes" : "No"));
+
+	if (sd.supports_alarms) {
+		for (i = 0; sff_8472_aw_flags[i].str; ++i) {
+			ssf_add_dict_string(d, sff_8472_aw_flags[i].str,
+					data[SFF_A2_BASE + sff_8472_aw_flags[i].offset]
+					& sff_8472_aw_flags[i].value ? "On" : "Off");
+		}
+		sff_show_thresholds(sd, d);
+	}
+}