[v3] app/dma-perf: introduce dma-perf application

Message ID 20230117120526.39375-1-cheng1.jiang@intel.com (mailing list archive)
State Superseded, archived
Delegated to: Thomas Monjalon
Headers
Series [v3] app/dma-perf: introduce dma-perf application |

Checks

Context Check Description
ci/checkpatch warning coding style issues
ci/loongarch-compilation success Compilation OK
ci/loongarch-unit-testing success Unit Testing PASS
ci/iol-broadcom-Performance success Performance Testing PASS
ci/iol-mellanox-Performance success Performance Testing PASS
ci/iol-intel-Functional success Functional Testing PASS
ci/github-robot: build success github build: passed
ci/iol-intel-Performance success Performance Testing PASS
ci/iol-abi-testing success Testing PASS
ci/iol-x86_64-compile-testing fail Testing issues
ci/iol-aarch64-compile-testing success Testing PASS
ci/iol-aarch64-unit-testing success Testing PASS
ci/iol-testing fail Testing issues
ci/iol-x86_64-unit-testing success Testing PASS
ci/Intel-compilation fail Compilation issues
ci/intel-Testing success Testing PASS

Commit Message

Jiang, Cheng1 Jan. 17, 2023, 12:05 p.m. UTC
  There are many high-performance DMA devices supported in DPDK now, and
these DMA devices can also be integrated into other modules of DPDK as
accelerators, such as Vhost. Before integrating DMA into applications,
developers need to know the performance of these DMA devices in various
scenarios and the performance of CPUs in the same scenario, such as
different buffer lengths. Only in this way can we know the target
performance of the application accelerated by using them. This patch
introduces a high-performance testing tool, which supports comparing the
performance of CPU and DMA in different scenarios automatically with a
pre-set config file. Memory Copy performance test are supported for now.

Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
Acked-by: Morten Brørup <mb@smartsharesystems.com>
---
v3:
fixed compile issues for loongarch.
fixed compile issues for intel.
fixed coding style issues.

v2:
fixed some CI issues.

 app/meson.build               |   1 +
 app/test-dma-perf/benchmark.c | 541 ++++++++++++++++++++++++++++++++++
 app/test-dma-perf/benchmark.h |  12 +
 app/test-dma-perf/config.ini  |  61 ++++
 app/test-dma-perf/main.c      | 434 +++++++++++++++++++++++++++
 app/test-dma-perf/main.h      |  57 ++++
 app/test-dma-perf/meson.build |  20 ++
 7 files changed, 1126 insertions(+)
 create mode 100644 app/test-dma-perf/benchmark.c
 create mode 100644 app/test-dma-perf/benchmark.h
 create mode 100644 app/test-dma-perf/config.ini
 create mode 100644 app/test-dma-perf/main.c
 create mode 100644 app/test-dma-perf/main.h
 create mode 100644 app/test-dma-perf/meson.build

--
2.35.1
  

Comments

Bruce Richardson Jan. 17, 2023, 3:44 p.m. UTC | #1
On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> There are many high-performance DMA devices supported in DPDK now, and
> these DMA devices can also be integrated into other modules of DPDK as
> accelerators, such as Vhost. Before integrating DMA into applications,
> developers need to know the performance of these DMA devices in various
> scenarios and the performance of CPUs in the same scenario, such as
> different buffer lengths. Only in this way can we know the target
> performance of the application accelerated by using them. This patch
> introduces a high-performance testing tool, which supports comparing the
> performance of CPU and DMA in different scenarios automatically with a
> pre-set config file. Memory Copy performance test are supported for now.
> 
> Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> Acked-by: Morten Brørup <mb@smartsharesystems.com>

Hi,

more review comments inline below.

/Bruce

> ---

<snip>

> eal_args=--legacy-mem --file-prefix=test

Why using legact-mem mode? Rather than these options, just use
"--in-memory" to avoid any conflicts. While this is only an example config,
we should steer people away from legacy memory mode.

> diff --git a/app/test-dma-perf/main.c b/app/test-dma-perf/main.c
> new file mode 100644
> index 0000000000..8041f5fdaf
> --- /dev/null
> +++ b/app/test-dma-perf/main.c
> @@ -0,0 +1,434 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2022 Intel Corporation
> + */
> +
> +#include <stdio.h>
> +#if !defined(RTE_EXEC_ENV_LINUX)
> +
> +int
> +main(int argc, char *argv[])
> +{
> +	printf("OS not supported, skipping test\n");
> +	return 0;
> +}
> +
> +#else
> +
> +#include <stdlib.h>
> +#include <getopt.h>
> +#include <signal.h>
> +#include <stdbool.h>
> +#include <unistd.h>
> +#include <sys/wait.h>
> +#include <inttypes.h>
> +
> +#include <rte_eal.h>
> +#include <rte_cfgfile.h>
> +#include <rte_string_fns.h>
> +#include <rte_lcore.h>
> +
> +#include "main.h"
> +#include "benchmark.h"
> +
> +#define CSV_HDR_FMT "Case %u : %s,lcore,DMA,buffer size,nr_buf,memory(MB),cycle,bandwidth(Gbps),OPS\n"
> +
> +#define MAX_EAL_PARAM_NB 100
> +#define MAX_EAL_PARAM_LEN 1024
> +
> +#define DMA_MEM_COPY "DMA_MEM_COPY"
> +#define CPU_MEM_COPY "CPU_MEM_COPY"
> +
> +#define MAX_PARAMS_PER_ENTRY 4
> +
> +enum {
> +	TEST_TYPE_NONE = 0,
> +	TEST_TYPE_DMA_MEM_COPY,
> +	TEST_TYPE_CPU_MEM_COPY
> +};
> +
> +#define MAX_TEST_CASES 16
> +static struct test_configure test_cases[MAX_TEST_CASES];
> +
> +char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
> +
> +static FILE *fd;
> +
> +static void
> +output_csv(bool need_blankline)
> +{
> +	uint32_t i;
> +
> +	if (need_blankline) {
> +		fprintf(fd, "%s", ",,,,,,,,\n");
> +		fprintf(fd, "%s", ",,,,,,,,\n");
you don't need the "%s" here. The string you are outputting is constant.
> +	}
> +
> +	for (i = 0; i < RTE_DIM(output_str); i++) {
> +		if (output_str[i][0]) {
> +			fprintf(fd, "%s", output_str[i]);
> +			memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);

Rather than zeroing the whole string with memset, would
"output_str[i][0] = '\0';" not work instead?

> +		}
> +	}
> +
> +	fflush(fd);
> +}
> +
> +static void
> +output_env_info(void)
> +{
> +	snprintf(output_str[0], MAX_OUTPUT_STR_LEN, "test environment:\n");
> +	snprintf(output_str[1], MAX_OUTPUT_STR_LEN, "frequency,%" PRIu64 "\n", rte_get_timer_hz());
> +
> +	output_csv(true);
> +}
> +
> +static void
> +output_header(uint32_t case_id, struct test_configure *case_cfg)
> +{
> +	snprintf(output_str[0], MAX_OUTPUT_STR_LEN,
> +			CSV_HDR_FMT, case_id, case_cfg->test_type_str);
> +
> +	output_csv(true);
> +}
> +
> +static void
> +run_test_case(struct test_configure *case_cfg)
> +{
> +	switch (case_cfg->test_type) {
> +	case TEST_TYPE_DMA_MEM_COPY:
> +		dma_mem_copy_benchmark(case_cfg);
> +		break;
> +	case TEST_TYPE_CPU_MEM_COPY:
> +		cpu_mem_copy_benchmark(case_cfg);
> +		break;
> +	default:
> +		printf("Unknown test type. %s\n", case_cfg->test_type_str);
> +		break;
> +	}
> +}
> +
> +static void
> +run_test(uint32_t case_id, struct test_configure *case_cfg)
> +{
> +	uint32_t i;
> +	uint32_t nb_lcores = rte_lcore_count();
> +	struct test_configure_entry *mem_size = &case_cfg->mem_size;
> +	struct test_configure_entry *buf_size = &case_cfg->buf_size;
> +	struct test_configure_entry *ring_size = &case_cfg->ring_size;
> +	struct test_configure_entry *kick_batch = &case_cfg->kick_batch;
> +	struct test_configure_entry *var_entry = NULL;
> +
> +	for (i = 0; i < RTE_DIM(output_str); i++)
> +		memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);
> +
> +	if (nb_lcores <= case_cfg->nb_workers) {
> +		printf("Case %u: Not enough lcores (%u) for all workers (%u).\n",
> +			case_id, nb_lcores, case_cfg->nb_workers);
> +		return;
> +	}
> +
> +	RTE_LOG(INFO, DMA, "Number of used lcores: %u.\n", nb_lcores);
> +
> +	if (mem_size->incr != 0)
> +		var_entry = mem_size;
> +
> +	if (buf_size->incr != 0)
> +		var_entry = buf_size;
> +
> +	if (ring_size->incr != 0)
> +		var_entry = ring_size;
> +
> +	if (kick_batch->incr != 0)
> +		var_entry = kick_batch;
> +
> +	case_cfg->scenario_id = 0;
> +
> +	output_header(case_id, case_cfg);
> +
> +	if (var_entry) {

Things may be a bit simpler if instead of branching here, you initialize
var_entry to a null var_entry i.e.

	struct test_configure_entry dummy = { 0 };
	struct test_configure_entry *var_entry = &dummy;

This gives you a single-iteration loop in the case where there is nothing
to vary.

> +		for (var_entry->cur = var_entry->first; var_entry->cur <= var_entry->last;) {
> +			case_cfg->scenario_id++;
> +			printf("\nRunning scenario %d\n", case_cfg->scenario_id);
> +
> +			run_test_case(case_cfg);
> +			output_csv(false);
> +
> +			if (var_entry->op == OP_MUL)
> +				var_entry->cur *= var_entry->incr;
> +			else
> +				var_entry->cur += var_entry->incr;
> +
> +
> +		}
> +	} else {
> +		run_test_case(case_cfg);
> +		output_csv(false);
> +	}
> +}
> +
> +static int
> +parse_entry(const char *value, struct test_configure_entry *entry)
> +{
> +	char input[255] = {0};
> +	char *args[MAX_PARAMS_PER_ENTRY];
> +	int args_nr = -1;
> +
> +	strncpy(input, value, 254);
> +	if (*input == '\0')
> +		goto out;
> +
> +	args_nr = rte_strsplit(input, strlen(input), args, MAX_PARAMS_PER_ENTRY, ',');
> +	if (args_nr <= 0)
> +		goto out;
> +
> +	entry->cur = entry->first = (uint32_t)atoi(args[0]);
> +	entry->last = args_nr > 1 ? (uint32_t)atoi(args[1]) : 0;
> +	entry->incr = args_nr > 2 ? (uint32_t)atoi(args[2]) : 0;
> +
> +	if (args_nr > 3) {
> +		if (!strcmp(args[3], "MUL"))
> +			entry->op = OP_MUL;
> +		else
> +			entry->op = OP_ADD;

This means accepting invalid input. I think you should check the value
against "ADD" so as to reject values like "SUB".

> +	} else
> +		entry->op = OP_NONE;
> +out:
> +	return args_nr;
> +}
> +
> +static void
> +load_configs(void)
> +{
> +	struct rte_cfgfile *cfgfile;
> +	int nb_sections, i;
> +	struct test_configure *test_case;
> +	char **sections_name;
> +	const char *section_name, *case_type;
> +	const char *mem_size_str, *buf_size_str, *ring_size_str, *kick_batch_str;
> +	int args_nr, nb_vp;
> +
> +	sections_name = malloc(MAX_TEST_CASES * sizeof(char *));
> +	for (i = 0; i < MAX_TEST_CASES; i++)
> +		sections_name[i] = malloc(CFG_NAME_LEN * sizeof(char *));
> +

I don't think you need to do this work, allocating space for a bunch of
section names. From the example, it looks like the sections should be
called "case1", "case2" etc., so you can just iterate through those
sections, rather than allowing sections to have arbitrary names.

> +	cfgfile = rte_cfgfile_load("./config.ini", 0);
> +	if (!cfgfile) {
> +		printf("Open configure file error.\n");
> +		exit(1);
> +	}

Don't hard-code the config file name. This should be taken from a
commandline parameter, so that one can have collections of different test
cases.

> +
> +	nb_sections = rte_cfgfile_num_sections(cfgfile, NULL, 0);
> +	if (nb_sections > MAX_TEST_CASES) {
> +		printf("Error: The maximum number of cases is %d.\n", MAX_TEST_CASES);
> +		exit(1);
> +	}
> +	rte_cfgfile_sections(cfgfile, sections_name, MAX_TEST_CASES);
> +	for (i = 0; i < nb_sections; i++) {

Iterate through names here, built up dynamically to save memory space.

> +		test_case = &test_cases[i];
> +		section_name = sections_name[i];
> +		case_type = rte_cfgfile_get_entry(cfgfile, section_name, "type");
> +		if (!case_type) {
> +			printf("Error: No case type in case %d\n.", i + 1);
> +			exit(1);
> +		}
> +		if (!strcmp(case_type, DMA_MEM_COPY)) {

Coding standard for DPDK requires this to be "strcmp(...) == 0" rather than
using "!" operator.

> +			test_case->test_type = TEST_TYPE_DMA_MEM_COPY;
> +			test_case->test_type_str = DMA_MEM_COPY;
> +		} else if (!strcmp(case_type, CPU_MEM_COPY)) {
> +			test_case->test_type = TEST_TYPE_CPU_MEM_COPY;
> +			test_case->test_type_str = CPU_MEM_COPY;
> +		} else {
> +			printf("Error: Cannot find case type %s.\n", case_type);
> +			exit(1);
> +		}
> +
> +		nb_vp = 0;
> +
> +		test_case->src_numa_node = (int)atoi(rte_cfgfile_get_entry(cfgfile,
> +								section_name, "src_numa_node"));
> +		test_case->dst_numa_node = (int)atoi(rte_cfgfile_get_entry(cfgfile,
> +								section_name, "dst_numa_node"));
> +
> +		mem_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "mem_size");
> +		args_nr = parse_entry(mem_size_str, &test_case->mem_size);
> +		if (args_nr < 0) {
> +			printf("parse error\n");
> +			break;
> +		} else if (args_nr > 1)
> +			nb_vp++;
> +
> +		buf_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "buf_size");
> +		args_nr = parse_entry(buf_size_str, &test_case->buf_size);
> +		if (args_nr < 0) {
> +			printf("parse error\n");
> +			break;
> +		} else if (args_nr > 1)
> +			nb_vp++;
> +
> +		ring_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "dma_ring_size");
> +		args_nr = parse_entry(ring_size_str, &test_case->ring_size);
> +		if (args_nr < 0) {
> +			printf("parse error\n");
> +			break;
> +		} else if (args_nr > 1)
> +			nb_vp++;
> +
> +		kick_batch_str = rte_cfgfile_get_entry(cfgfile, section_name, "kick_batch");
> +		args_nr = parse_entry(kick_batch_str, &test_case->kick_batch);
> +		if (args_nr < 0) {
> +			printf("parse error\n");
> +			break;
> +		} else if (args_nr > 1)
> +			nb_vp++;
> +
> +		if (nb_vp > 2) {
> +			printf("%s, variable parameters can only have one.\n", section_name);

Reword to: "Error, each section can only have a single variable parameter"
Also, comparison should be ">= 2" (or "> 1") rather than "> 2", which would
allow 2 as a valid value.

> +			break;
> +		}
> +
> +		test_case->cache_flush =
> +			(int)atoi(rte_cfgfile_get_entry(cfgfile, section_name, "cache_flush"));
> +		test_case->repeat_times =
> +			(uint32_t)atoi(rte_cfgfile_get_entry(cfgfile,
> +					section_name, "repeat_times"));
> +		test_case->nb_workers =
> +			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
> +					section_name, "worker_threads"));
> +		test_case->mpool_iter_step =
> +			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
> +					section_name, "mpool_iter_step"));
> +
> +		test_case->eal_args = rte_cfgfile_get_entry(cfgfile, section_name, "eal_args");
> +	}
> +
> +	rte_cfgfile_close(cfgfile);
> +	for (i = 0; i < MAX_TEST_CASES; i++) {
> +		if (sections_name[i] != NULL)
> +			free(sections_name[i]);

Two points here:

1. You don't need to check for NULL before calling "free()". Free just does
nothing if passed a null pointer

2. None of these values should be NULL anyway, and you need to check the
return from the malloc call. If you *do* keep the current way of reading
sections (and I recommend you don't - see my comments above), you need to
check that each malloc succeeds or else the call to "rte_cfgfile_sections"
will try and do a strlcpy to a null pointer.

> +	}
> +	free(sections_name);
> +}
> +
> +/* Parse the argument given in the command line of the application */
> +static int
> +append_eal_args(int argc, char **argv, const char *eal_args, char **new_argv)
> +{
> +	int i;
> +	char *tokens[MAX_EAL_PARAM_NB];
> +	char args[MAX_EAL_PARAM_LEN] = {0};
> +	int new_argc, token_nb;
> +
> +	new_argc = argc;
> +
> +	for (i = 0; i < argc; i++)
> +		strcpy(new_argv[i], argv[i]);

I'm not sure we have a guarantee that new_argv will be big enough, do we?
Better to use strlcpy just in case here.

> +
> +	if (eal_args) {
> +		strcpy(args, eal_args);

Use strlcpy for safety.

> +		token_nb = rte_strsplit(args, strlen(args),
> +					tokens, MAX_EAL_PARAM_NB, ' ');
> +		for (i = 0; i < token_nb; i++)
> +			strcpy(new_argv[new_argc++], tokens[i]);
> +	}
> +
> +	return new_argc;
> +}
> +
> +int
> +main(int argc __maybe_unused, char *argv[] __maybe_unused)
> +{
> +	int ret;
> +	uint32_t i, nb_lcores;
> +	pid_t cpid, wpid;
> +	int wstatus;
> +	char args[MAX_EAL_PARAM_NB][MAX_EAL_PARAM_LEN];
> +	char *pargs[100];

char *pargs[MAX_EAL_PARAM_NB] ??

> +	int new_argc;
> +
> +
> +	memset(args, 0, sizeof(args));
> +	for (i = 0; i < 100; i++)

RTE_DIM(pargs)

> +		pargs[i] = args[i];
> +
> +	load_configs();
> +	fd = fopen("./test_result.csv", "w");

Like the config file, the result output file should be configurable.
Perhaps it should be based off the config file name?

	test1.ini => test1_result.csv
	config.ini => config_result.csv

> +	if (!fd) {
> +		printf("Open output CSV file error.\n");
> +		return 0;
> +	}
> +	fclose(fd);
> +
> +	/* loop each case, run it */
> +	for (i = 0; i < MAX_TEST_CASES; i++) {
> +		if (test_cases[i].test_type != TEST_TYPE_NONE) {

Flip this condition to reduce indentation:

	if (test_cases[i].test_type == TEST_TYPE_NONE)
		continue;

> +			cpid = fork();
> +			if (cpid < 0) {
> +				printf("Fork case %d failed.\n", i + 1);
> +				exit(EXIT_FAILURE);
> +			} else if (cpid == 0) {
> +				printf("\nRunning case %u\n", i + 1);
> +
> +				if (test_cases[i].eal_args) {
> +					new_argc = append_eal_args(argc, argv,
> +						test_cases[i].eal_args, pargs);
> +
> +					ret = rte_eal_init(new_argc, pargs);
> +				} else {

You don't need this if-else here. The append_eal_args function handles a
NULL parameter, so unconditionally call append_eal_args and then
eal_init(new_argc, pargs). We won't notice the different in init time, but
the code would be clearer.

> +					ret = rte_eal_init(argc, argv);
> +				}
> +				if (ret < 0)
> +					rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
> +
> +				/* Check lcores. */
> +				nb_lcores = rte_lcore_count();
> +				if (nb_lcores < 2)
> +					rte_exit(EXIT_FAILURE,
> +						"There should be at least 2 worker lcores.\n");
> +
> +				fd = fopen("./test_result.csv", "a");
> +				if (!fd) {
> +					printf("Open output CSV file error.\n");
> +					return 0;
> +				}
> +
> +				if (i == 0)
> +					output_env_info();

Beware that you have a condition above to skip any test cases where
"test_type == TEST_TYPE_NONE". Therefore, if the first test is of type
NONE, the env_info will never be printed.

> +				run_test(i + 1, &test_cases[i]);
> +
> +				/* clean up the EAL */
> +				rte_eal_cleanup();
> +
> +				fclose(fd);
> +
> +				printf("\nCase %u completed.\n", i + 1);
> +
> +				exit(EXIT_SUCCESS);
> +			} else {
> +				wpid = waitpid(cpid, &wstatus, 0);
> +				if (wpid == -1) {
> +					printf("waitpid error.\n");
> +					exit(EXIT_FAILURE);
> +				}
> +
> +				if (WIFEXITED(wstatus))
> +					printf("Case process exited. status %d\n",
> +						WEXITSTATUS(wstatus));
> +				else if (WIFSIGNALED(wstatus))
> +					printf("Case process killed by signal %d\n",
> +						WTERMSIG(wstatus));
> +				else if (WIFSTOPPED(wstatus))
> +					printf("Case process stopped by signal %d\n",
> +						WSTOPSIG(wstatus));
> +				else if (WIFCONTINUED(wstatus))
> +					printf("Case process continued.\n");
> +				else
> +					printf("Case process unknown terminated.\n");
> +			}
> +		}
> +	}
> +
> +	printf("Bye...\n");
> +	return 0;
> +}
> +
> +#endif
> diff --git a/app/test-dma-perf/main.h b/app/test-dma-perf/main.h
> new file mode 100644
> index 0000000000..a8fcf4f34d
> --- /dev/null
> +++ b/app/test-dma-perf/main.h
> @@ -0,0 +1,57 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2022 Intel Corporation
> + */
> +
> +#ifndef _MAIN_H_
> +#define _MAIN_H_
> +
> +
> +#include <rte_common.h>
> +#include <rte_cycles.h>
> +
> +#ifndef __maybe_unused
> +#define __maybe_unused	__rte_unused
> +#endif
> +
> +#define MAX_WORKER_NB 128
> +#define MAX_OUTPUT_STR_LEN 512
> +
> +#define RTE_LOGTYPE_DMA RTE_LOGTYPE_USER1
> +

While there are a number of RTE_LOG calls in the app, I also see a number
of regular printfs for output. Again, please standardize on one output - if
using just printf, you can drop this line.

> +extern char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
> +
> +typedef enum {
> +	OP_NONE = 0,
> +	OP_ADD,
> +	OP_MUL
> +} alg_op_type;
> +
> +struct test_configure_entry {
> +	uint32_t first;
> +	uint32_t last;
> +	uint32_t incr;
> +	alg_op_type op;
> +	uint32_t cur;
> +};
> +
> +struct test_configure {
> +	uint8_t test_type;
> +	const char *test_type_str;
> +	uint16_t src_numa_node;
> +	uint16_t dst_numa_node;
> +	uint16_t opcode;
> +	bool is_dma;
> +	struct test_configure_entry mem_size;
> +	struct test_configure_entry buf_size;
> +	struct test_configure_entry ring_size;
> +	struct test_configure_entry kick_batch;
> +	uint32_t cache_flush;
> +	uint32_t nr_buf;
> +	uint32_t repeat_times;
> +	uint32_t nb_workers;
> +	uint16_t mpool_iter_step;
> +	const char *eal_args;
> +	uint8_t scenario_id;
> +};
> +
> +#endif /* _MAIN_H_ */
> diff --git a/app/test-dma-perf/meson.build b/app/test-dma-perf/meson.build
> new file mode 100644
> index 0000000000..001f67f6c1
> --- /dev/null
> +++ b/app/test-dma-perf/meson.build
> @@ -0,0 +1,20 @@
> +# SPDX-License-Identifier: BSD-3-Clause
> +# Copyright(c) 2019-2022 Intel Corporation

2023 now

> +
> +# meson file, for building this example as part of a main DPDK build.
> +#
> +# To build this example as a standalone application with an already-installed
> +# DPDK instance, use 'make'

Drop this comment. The test apps in "app" folder are for building as part
of DPDK only, there is no makefile to use.

> +
> +if is_windows
> +    build = false
> +    reason = 'not supported on Windows'
> +    subdir_done()
> +endif
> +
> +deps += ['dmadev', 'mbuf', 'cfgfile']
> +
> +sources = files(
> +        'main.c',
> +        'benchmark.c',
> +)
> --
> 2.35.1
>
  
Bruce Richardson Jan. 17, 2023, 4:51 p.m. UTC | #2
On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> There are many high-performance DMA devices supported in DPDK now, and
> these DMA devices can also be integrated into other modules of DPDK as
> accelerators, such as Vhost. Before integrating DMA into applications,
> developers need to know the performance of these DMA devices in various
> scenarios and the performance of CPUs in the same scenario, such as
> different buffer lengths. Only in this way can we know the target
> performance of the application accelerated by using them. This patch
> introduces a high-performance testing tool, which supports comparing the
> performance of CPU and DMA in different scenarios automatically with a
> pre-set config file. Memory Copy performance test are supported for now.
> 
> Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> Acked-by: Morten Brørup <mb@smartsharesystems.com>
> ---

More input based off trying running the application, including some
thoughts on the testing methodology below.


> +static void
> +output_result(uint8_t scenario_id, uint32_t lcore_id, uint16_t dev_id, uint64_t ave_cycle,
> +			uint32_t buf_size, uint32_t nr_buf, uint32_t memory,
> +			float bandwidth, uint64_t ops, bool is_dma)
> +{
> +	if (is_dma)
> +		printf("lcore %u, DMA %u:\n"
> +				"average cycles: %" PRIu64 ","
> +				" buffer size: %u, nr_buf: %u,"
> +				" memory: %uMB, frequency: %" PRIu64 ".\n",
> +				lcore_id,
> +				dev_id,
> +				ave_cycle,
> +				buf_size,
> +				nr_buf,
> +				memory,
> +				rte_get_timer_hz());
> +	else
> +		printf("lcore %u\n"
> +			"average cycles: %" PRIu64 ","
> +			" buffer size: %u, nr_buf: %u,"
> +			" memory: %uMB, frequency: %" PRIu64 ".\n",
> +			lcore_id,
> +			ave_cycle,
> +			buf_size,
> +			nr_buf,
> +			memory,
> +			rte_get_timer_hz());
> +

The term "average cycles" is unclear here - is it average cycles per test
iteration, or average cycles per buffer copy?


> +	printf("Average bandwidth: %.3lfGbps, OPS: %" PRIu64 "\n", bandwidth, ops);
> +

<snip>

> +
> +static inline void
> +do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t kick_batch, uint32_t buf_size,
> +			uint16_t mpool_iter_step, struct rte_mbuf **srcs, struct rte_mbuf **dsts)
> +{
> +	int64_t async_cnt = 0;
> +	int nr_cpl = 0;
> +	uint32_t index;
> +	uint16_t offset;
> +	uint32_t i;
> +
> +	for (offset = 0; offset < mpool_iter_step; offset++) {
> +		for (i = 0; index = i * mpool_iter_step + offset, index < nr_buf; i++) {
> +			if (unlikely(rte_dma_copy(dev_id,
> +						0,
> +						srcs[index]->buf_iova + srcs[index]->data_off,
> +						dsts[index]->buf_iova + dsts[index]->data_off,
> +						buf_size,
> +						0) < 0)) {
> +				rte_dma_submit(dev_id, 0);
> +				while (rte_dma_burst_capacity(dev_id, 0) == 0) {
> +					nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB,
> +								NULL, NULL);
> +					async_cnt -= nr_cpl;
> +				}
> +				if (rte_dma_copy(dev_id,
> +						0,
> +						srcs[index]->buf_iova + srcs[index]->data_off,
> +						dsts[index]->buf_iova + dsts[index]->data_off,
> +						buf_size,
> +						0) < 0) {
> +					printf("enqueue fail again at %u\n", index);
> +					printf("space:%d\n", rte_dma_burst_capacity(dev_id, 0));
> +					rte_exit(EXIT_FAILURE, "DMA enqueue failed\n");
> +				}
> +			}
> +			async_cnt++;
> +
> +			/**
> +			 * When '&' is used to wrap an index, mask must be a power of 2.
> +			 * That is, kick_batch must be 2^n.
> +			 */
> +			if (unlikely((async_cnt % kick_batch) == 0)) {
> +				rte_dma_submit(dev_id, 0);
> +				/* add a poll to avoid ring full */
> +				nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
> +				async_cnt -= nr_cpl;
> +			}
> +		}
> +
> +		rte_dma_submit(dev_id, 0);
> +		while (async_cnt > 0) {
> +			nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
> +			async_cnt -= nr_cpl;
> +		}

I have a couple of concerns about the methodology for testing the HW DMA
performance. For example, the inclusion of that final block means that we
are including the latency of the copy operation in the result.

If the objective of the test application is to determine if it is cheaper
for software to offload a copy operation to HW or do it in SW, then the
primary concern is the HW offload cost. That offload cost should remain
constant irrespective of the size of the copy - since all you are doing is
writing a descriptor and reading a completion result. However, seeing the
results of running the app, I notice that the reported average cycles
increases as the packet size increases, which would tend to indicate that
we are not giving a realistic measurement of offload cost.

The trouble then becomes how to do so in a more realistic manner. The most
accurate way I can think of in a unit test like this is to offload
<queue_size> entries to the device and measure the cycles taken there. Then
wait until such time as all copies are completed (to eliminate the latency
time, which in a real-world case would be spent by a core doing something
else), and then do a second measurement of the time taken to process all
the completions. In the same way as for a SW copy, any time not spent in
memcpy is not copy time, for HW copies any time spent not writing
descriptors or reading completions is not part of the offload cost.

That said, doing the above is still not fully realistic, as a real-world
app will likely still have some amount of other overhead, for example,
polling occasionally for completions in between doing other work (though
one would expect this to be relatively cheap).  Similarly, if the
submission queue fills, the app may have to delay waiting for space to
submit jobs, and therefore see some of the HW copy latency.

Therefore, I think the most realistic way to measure this is to look at the
rate of operations while processing is being done in the middle of the
test. For example, if we have a simple packet processing application,
running the application just doing RX and TX and measuring the rate allows
us to determine the basic packet I/O cost. Adding in an offload to HW for
each packet and again measuring the rate, will then allow us to compute the
true offload copy cost of the operation, and should give us a number that
remains flat even as packet size increases. For previous work done on vhost
with DMA acceleration, I believe we saw exactly that - while SW PPS reduced
as packet size increased, with HW copies the PPS remained constant even as
packet size increased.

The challenge to my mind, is therefore how to implement this in a suitable
unit-test style way, to fit into the framework you have given here. I would
suggest that the actual performance measurement needs to be done - not on a
total time - but on a fixed time basis within each test. For example, when
doing HW copies, 1ms into each test run, we need to snapshot the completed
entries, and then say 1ms later measure the number that have been completed
since. In this way, we avoid the initial startup latency while we wait for
jobs to start completing, and we avoid the final latency as we await the
last job to complete. We would also include time for some potentially empty
polls, and if a queue size is too small see that reflected in the
performance too.

Thoughts, input from others?

/Bruce
  
Jiang, Cheng1 Jan. 19, 2023, 7:18 a.m. UTC | #3
Hi Bruce,

Replies are inline.
Really appreciate your comments.
I'll fix it in the next version.

Thanks,
Cheng

> -----Original Message-----
> From: Richardson, Bruce <bruce.richardson@intel.com>
> Sent: Tuesday, January 17, 2023 11:44 PM
> To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> Cc: thomas@monjalon.net; mb@smartsharesystems.com; dev@dpdk.org; Hu,
> Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma, WenwuX
> <wenwux.ma@intel.com>; Wang, YuanX <yuanx.wang@intel.com>; He,
> Xingguang <xingguang.he@intel.com>
> Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> 
> On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> > There are many high-performance DMA devices supported in DPDK now, and
> > these DMA devices can also be integrated into other modules of DPDK as
> > accelerators, such as Vhost. Before integrating DMA into applications,
> > developers need to know the performance of these DMA devices in
> > various scenarios and the performance of CPUs in the same scenario,
> > such as different buffer lengths. Only in this way can we know the
> > target performance of the application accelerated by using them. This
> > patch introduces a high-performance testing tool, which supports
> > comparing the performance of CPU and DMA in different scenarios
> > automatically with a pre-set config file. Memory Copy performance test are
> supported for now.
> >
> > Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> > Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> > Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> > Acked-by: Morten Brørup <mb@smartsharesystems.com>
> 
> Hi,
> 
> more review comments inline below.
> 
> /Bruce
> 
> > ---
> 
> <snip>
> 
> > eal_args=--legacy-mem --file-prefix=test
> 
> Why using legact-mem mode? Rather than these options, just use "--in-memory"
> to avoid any conflicts. While this is only an example config, we should steer
> people away from legacy memory mode.

Ok, got it. I'll fix it.

> 
> > diff --git a/app/test-dma-perf/main.c b/app/test-dma-perf/main.c new
> > file mode 100644 index 0000000000..8041f5fdaf
> > --- /dev/null
> > +++ b/app/test-dma-perf/main.c
> > @@ -0,0 +1,434 @@
> > +/* SPDX-License-Identifier: BSD-3-Clause
> > + * Copyright(c) 2022 Intel Corporation  */
> > +
> > +#include <stdio.h>
> > +#if !defined(RTE_EXEC_ENV_LINUX)
> > +
> > +int
> > +main(int argc, char *argv[])
> > +{
> > +	printf("OS not supported, skipping test\n");
> > +	return 0;
> > +}
> > +
> > +#else
> > +
> > +#include <stdlib.h>
> > +#include <getopt.h>
> > +#include <signal.h>
> > +#include <stdbool.h>
> > +#include <unistd.h>
> > +#include <sys/wait.h>
> > +#include <inttypes.h>
> > +
> > +#include <rte_eal.h>
> > +#include <rte_cfgfile.h>
> > +#include <rte_string_fns.h>
> > +#include <rte_lcore.h>
> > +
> > +#include "main.h"
> > +#include "benchmark.h"
> > +
> > +#define CSV_HDR_FMT "Case %u : %s,lcore,DMA,buffer
> size,nr_buf,memory(MB),cycle,bandwidth(Gbps),OPS\n"
> > +
> > +#define MAX_EAL_PARAM_NB 100
> > +#define MAX_EAL_PARAM_LEN 1024
> > +
> > +#define DMA_MEM_COPY "DMA_MEM_COPY"
> > +#define CPU_MEM_COPY "CPU_MEM_COPY"
> > +
> > +#define MAX_PARAMS_PER_ENTRY 4
> > +
> > +enum {
> > +	TEST_TYPE_NONE = 0,
> > +	TEST_TYPE_DMA_MEM_COPY,
> > +	TEST_TYPE_CPU_MEM_COPY
> > +};
> > +
> > +#define MAX_TEST_CASES 16
> > +static struct test_configure test_cases[MAX_TEST_CASES];
> > +
> > +char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
> > +
> > +static FILE *fd;
> > +
> > +static void
> > +output_csv(bool need_blankline)
> > +{
> > +	uint32_t i;
> > +
> > +	if (need_blankline) {
> > +		fprintf(fd, "%s", ",,,,,,,,\n");
> > +		fprintf(fd, "%s", ",,,,,,,,\n");
> you don't need the "%s" here. The string you are outputting is constant.

Sure, sorry about that.

> > +	}
> > +
> > +	for (i = 0; i < RTE_DIM(output_str); i++) {
> > +		if (output_str[i][0]) {
> > +			fprintf(fd, "%s", output_str[i]);
> > +			memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);
> 
> Rather than zeroing the whole string with memset, would "output_str[i][0] =
> '\0';" not work instead?

Good point. I'll try it in the next version. 

> 
> > +		}
> > +	}
> > +
> > +	fflush(fd);
> > +}
> > +
> > +static void
> > +output_env_info(void)
> > +{
> > +	snprintf(output_str[0], MAX_OUTPUT_STR_LEN, "test environment:\n");
> > +	snprintf(output_str[1], MAX_OUTPUT_STR_LEN, "frequency,%" PRIu64
> > +"\n", rte_get_timer_hz());
> > +
> > +	output_csv(true);
> > +}
> > +
> > +static void
> > +output_header(uint32_t case_id, struct test_configure *case_cfg) {
> > +	snprintf(output_str[0], MAX_OUTPUT_STR_LEN,
> > +			CSV_HDR_FMT, case_id, case_cfg->test_type_str);
> > +
> > +	output_csv(true);
> > +}
> > +
> > +static void
> > +run_test_case(struct test_configure *case_cfg) {
> > +	switch (case_cfg->test_type) {
> > +	case TEST_TYPE_DMA_MEM_COPY:
> > +		dma_mem_copy_benchmark(case_cfg);
> > +		break;
> > +	case TEST_TYPE_CPU_MEM_COPY:
> > +		cpu_mem_copy_benchmark(case_cfg);
> > +		break;
> > +	default:
> > +		printf("Unknown test type. %s\n", case_cfg->test_type_str);
> > +		break;
> > +	}
> > +}
> > +
> > +static void
> > +run_test(uint32_t case_id, struct test_configure *case_cfg) {
> > +	uint32_t i;
> > +	uint32_t nb_lcores = rte_lcore_count();
> > +	struct test_configure_entry *mem_size = &case_cfg->mem_size;
> > +	struct test_configure_entry *buf_size = &case_cfg->buf_size;
> > +	struct test_configure_entry *ring_size = &case_cfg->ring_size;
> > +	struct test_configure_entry *kick_batch = &case_cfg->kick_batch;
> > +	struct test_configure_entry *var_entry = NULL;
> > +
> > +	for (i = 0; i < RTE_DIM(output_str); i++)
> > +		memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);
> > +
> > +	if (nb_lcores <= case_cfg->nb_workers) {
> > +		printf("Case %u: Not enough lcores (%u) for all workers (%u).\n",
> > +			case_id, nb_lcores, case_cfg->nb_workers);
> > +		return;
> > +	}
> > +
> > +	RTE_LOG(INFO, DMA, "Number of used lcores: %u.\n", nb_lcores);
> > +
> > +	if (mem_size->incr != 0)
> > +		var_entry = mem_size;
> > +
> > +	if (buf_size->incr != 0)
> > +		var_entry = buf_size;
> > +
> > +	if (ring_size->incr != 0)
> > +		var_entry = ring_size;
> > +
> > +	if (kick_batch->incr != 0)
> > +		var_entry = kick_batch;
> > +
> > +	case_cfg->scenario_id = 0;
> > +
> > +	output_header(case_id, case_cfg);
> > +
> > +	if (var_entry) {
> 
> Things may be a bit simpler if instead of branching here, you initialize var_entry
> to a null var_entry i.e.
> 
> 	struct test_configure_entry dummy = { 0 };
> 	struct test_configure_entry *var_entry = &dummy;
> 
> This gives you a single-iteration loop in the case where there is nothing to vary.

I'll consider it, thanks!

> 
> > +		for (var_entry->cur = var_entry->first; var_entry->cur <=
> var_entry->last;) {
> > +			case_cfg->scenario_id++;
> > +			printf("\nRunning scenario %d\n", case_cfg-
> >scenario_id);
> > +
> > +			run_test_case(case_cfg);
> > +			output_csv(false);
> > +
> > +			if (var_entry->op == OP_MUL)
> > +				var_entry->cur *= var_entry->incr;
> > +			else
> > +				var_entry->cur += var_entry->incr;
> > +
> > +
> > +		}
> > +	} else {
> > +		run_test_case(case_cfg);
> > +		output_csv(false);
> > +	}
> > +}
> > +
> > +static int
> > +parse_entry(const char *value, struct test_configure_entry *entry) {
> > +	char input[255] = {0};
> > +	char *args[MAX_PARAMS_PER_ENTRY];
> > +	int args_nr = -1;
> > +
> > +	strncpy(input, value, 254);
> > +	if (*input == '\0')
> > +		goto out;
> > +
> > +	args_nr = rte_strsplit(input, strlen(input), args,
> MAX_PARAMS_PER_ENTRY, ',');
> > +	if (args_nr <= 0)
> > +		goto out;
> > +
> > +	entry->cur = entry->first = (uint32_t)atoi(args[0]);
> > +	entry->last = args_nr > 1 ? (uint32_t)atoi(args[1]) : 0;
> > +	entry->incr = args_nr > 2 ? (uint32_t)atoi(args[2]) : 0;
> > +
> > +	if (args_nr > 3) {
> > +		if (!strcmp(args[3], "MUL"))
> > +			entry->op = OP_MUL;
> > +		else
> > +			entry->op = OP_ADD;
> 
> This means accepting invalid input. I think you should check the value against
> "ADD" so as to reject values like "SUB".

You are right, thanks! I'll fix it.

> 
> > +	} else
> > +		entry->op = OP_NONE;
> > +out:
> > +	return args_nr;
> > +}
> > +
> > +static void
> > +load_configs(void)
> > +{
> > +	struct rte_cfgfile *cfgfile;
> > +	int nb_sections, i;
> > +	struct test_configure *test_case;
> > +	char **sections_name;
> > +	const char *section_name, *case_type;
> > +	const char *mem_size_str, *buf_size_str, *ring_size_str,
> *kick_batch_str;
> > +	int args_nr, nb_vp;
> > +
> > +	sections_name = malloc(MAX_TEST_CASES * sizeof(char *));
> > +	for (i = 0; i < MAX_TEST_CASES; i++)
> > +		sections_name[i] = malloc(CFG_NAME_LEN * sizeof(char *));
> > +
> 
> I don't think you need to do this work, allocating space for a bunch of section
> names. From the example, it looks like the sections should be called "case1",
> "case2" etc., so you can just iterate through those sections, rather than allowing
> sections to have arbitrary names.

Good point, I'll try it in the next version.

> 
> > +	cfgfile = rte_cfgfile_load("./config.ini", 0);
> > +	if (!cfgfile) {
> > +		printf("Open configure file error.\n");
> > +		exit(1);
> > +	}
> 
> Don't hard-code the config file name. This should be taken from a commandline
> parameter, so that one can have collections of different test cases.

Yes, you are right, I'll fix it.

> 
> > +
> > +	nb_sections = rte_cfgfile_num_sections(cfgfile, NULL, 0);
> > +	if (nb_sections > MAX_TEST_CASES) {
> > +		printf("Error: The maximum number of cases is %d.\n",
> MAX_TEST_CASES);
> > +		exit(1);
> > +	}
> > +	rte_cfgfile_sections(cfgfile, sections_name, MAX_TEST_CASES);
> > +	for (i = 0; i < nb_sections; i++) {
> 
> Iterate through names here, built up dynamically to save memory space.

Sure.

> 
> > +		test_case = &test_cases[i];
> > +		section_name = sections_name[i];
> > +		case_type = rte_cfgfile_get_entry(cfgfile, section_name,
> "type");
> > +		if (!case_type) {
> > +			printf("Error: No case type in case %d\n.", i + 1);
> > +			exit(1);
> > +		}
> > +		if (!strcmp(case_type, DMA_MEM_COPY)) {
> 
> Coding standard for DPDK requires this to be "strcmp(...) == 0" rather than using
> "!" operator.

OK, got it.

> 
> > +			test_case->test_type = TEST_TYPE_DMA_MEM_COPY;
> > +			test_case->test_type_str = DMA_MEM_COPY;
> > +		} else if (!strcmp(case_type, CPU_MEM_COPY)) {
> > +			test_case->test_type = TEST_TYPE_CPU_MEM_COPY;
> > +			test_case->test_type_str = CPU_MEM_COPY;
> > +		} else {
> > +			printf("Error: Cannot find case type %s.\n", case_type);
> > +			exit(1);
> > +		}
> > +
> > +		nb_vp = 0;
> > +
> > +		test_case->src_numa_node =
> (int)atoi(rte_cfgfile_get_entry(cfgfile,
> > +								section_name,
> "src_numa_node"));
> > +		test_case->dst_numa_node =
> (int)atoi(rte_cfgfile_get_entry(cfgfile,
> > +								section_name,
> "dst_numa_node"));
> > +
> > +		mem_size_str = rte_cfgfile_get_entry(cfgfile, section_name,
> "mem_size");
> > +		args_nr = parse_entry(mem_size_str, &test_case->mem_size);
> > +		if (args_nr < 0) {
> > +			printf("parse error\n");
> > +			break;
> > +		} else if (args_nr > 1)
> > +			nb_vp++;
> > +
> > +		buf_size_str = rte_cfgfile_get_entry(cfgfile, section_name,
> "buf_size");
> > +		args_nr = parse_entry(buf_size_str, &test_case->buf_size);
> > +		if (args_nr < 0) {
> > +			printf("parse error\n");
> > +			break;
> > +		} else if (args_nr > 1)
> > +			nb_vp++;
> > +
> > +		ring_size_str = rte_cfgfile_get_entry(cfgfile, section_name,
> "dma_ring_size");
> > +		args_nr = parse_entry(ring_size_str, &test_case->ring_size);
> > +		if (args_nr < 0) {
> > +			printf("parse error\n");
> > +			break;
> > +		} else if (args_nr > 1)
> > +			nb_vp++;
> > +
> > +		kick_batch_str = rte_cfgfile_get_entry(cfgfile, section_name,
> "kick_batch");
> > +		args_nr = parse_entry(kick_batch_str, &test_case->kick_batch);
> > +		if (args_nr < 0) {
> > +			printf("parse error\n");
> > +			break;
> > +		} else if (args_nr > 1)
> > +			nb_vp++;
> > +
> > +		if (nb_vp > 2) {
> > +			printf("%s, variable parameters can only have one.\n",
> > +section_name);
> 
> Reword to: "Error, each section can only have a single variable parameter"
> Also, comparison should be ">= 2" (or "> 1") rather than "> 2", which would
> allow 2 as a valid value.

Sure, thanks.

> 
> > +			break;
> > +		}
> > +
> > +		test_case->cache_flush =
> > +			(int)atoi(rte_cfgfile_get_entry(cfgfile, section_name,
> "cache_flush"));
> > +		test_case->repeat_times =
> > +			(uint32_t)atoi(rte_cfgfile_get_entry(cfgfile,
> > +					section_name, "repeat_times"));
> > +		test_case->nb_workers =
> > +			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
> > +					section_name, "worker_threads"));
> > +		test_case->mpool_iter_step =
> > +			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
> > +					section_name, "mpool_iter_step"));
> > +
> > +		test_case->eal_args = rte_cfgfile_get_entry(cfgfile,
> section_name, "eal_args");
> > +	}
> > +
> > +	rte_cfgfile_close(cfgfile);
> > +	for (i = 0; i < MAX_TEST_CASES; i++) {
> > +		if (sections_name[i] != NULL)
> > +			free(sections_name[i]);
> 
> Two points here:
> 
> 1. You don't need to check for NULL before calling "free()". Free just does
> nothing if passed a null pointer
> 
> 2. None of these values should be NULL anyway, and you need to check the
> return from the malloc call. If you *do* keep the current way of reading sections
> (and I recommend you don't - see my comments above), you need to check that
> each malloc succeeds or else the call to "rte_cfgfile_sections"
> will try and do a strlcpy to a null pointer.

Sure, got it!

> 
> > +	}
> > +	free(sections_name);
> > +}
> > +
> > +/* Parse the argument given in the command line of the application */
> > +static int append_eal_args(int argc, char **argv, const char
> > +*eal_args, char **new_argv) {
> > +	int i;
> > +	char *tokens[MAX_EAL_PARAM_NB];
> > +	char args[MAX_EAL_PARAM_LEN] = {0};
> > +	int new_argc, token_nb;
> > +
> > +	new_argc = argc;
> > +
> > +	for (i = 0; i < argc; i++)
> > +		strcpy(new_argv[i], argv[i]);
> 
> I'm not sure we have a guarantee that new_argv will be big enough, do we?
> Better to use strlcpy just in case here.

I agree with you, we don't have a guarantee for that. I'll fix it.

> 
> > +
> > +	if (eal_args) {
> > +		strcpy(args, eal_args);
> 
> Use strlcpy for safety.

Sure.

> 
> > +		token_nb = rte_strsplit(args, strlen(args),
> > +					tokens, MAX_EAL_PARAM_NB, ' ');
> > +		for (i = 0; i < token_nb; i++)
> > +			strcpy(new_argv[new_argc++], tokens[i]);
> > +	}
> > +
> > +	return new_argc;
> > +}
> > +
> > +int
> > +main(int argc __maybe_unused, char *argv[] __maybe_unused) {
> > +	int ret;
> > +	uint32_t i, nb_lcores;
> > +	pid_t cpid, wpid;
> > +	int wstatus;
> > +	char args[MAX_EAL_PARAM_NB][MAX_EAL_PARAM_LEN];
> > +	char *pargs[100];
> 
> char *pargs[MAX_EAL_PARAM_NB] ??

Sure, sorry about that.

> 
> > +	int new_argc;
> > +
> > +
> > +	memset(args, 0, sizeof(args));
> > +	for (i = 0; i < 100; i++)
> 
> RTE_DIM(pargs)

Sure.

> 
> > +		pargs[i] = args[i];
> > +
> > +	load_configs();
> > +	fd = fopen("./test_result.csv", "w");
> 
> Like the config file, the result output file should be configurable.
> Perhaps it should be based off the config file name?
> 
> 	test1.ini => test1_result.csv
> 	config.ini => config_result.csv

Good point, thanks!

> 
> > +	if (!fd) {
> > +		printf("Open output CSV file error.\n");
> > +		return 0;
> > +	}
> > +	fclose(fd);
> > +
> > +	/* loop each case, run it */
> > +	for (i = 0; i < MAX_TEST_CASES; i++) {
> > +		if (test_cases[i].test_type != TEST_TYPE_NONE) {
> 
> Flip this condition to reduce indentation:
> 
> 	if (test_cases[i].test_type == TEST_TYPE_NONE)
> 		continue;

Sure.

> 
> > +			cpid = fork();
> > +			if (cpid < 0) {
> > +				printf("Fork case %d failed.\n", i + 1);
> > +				exit(EXIT_FAILURE);
> > +			} else if (cpid == 0) {
> > +				printf("\nRunning case %u\n", i + 1);
> > +
> > +				if (test_cases[i].eal_args) {
> > +					new_argc = append_eal_args(argc,
> argv,
> > +						test_cases[i].eal_args, pargs);
> > +
> > +					ret = rte_eal_init(new_argc, pargs);
> > +				} else {
> 
> You don't need this if-else here. The append_eal_args function handles a NULL
> parameter, so unconditionally call append_eal_args and then eal_init(new_argc,
> pargs). We won't notice the different in init time, but the code would be clearer.

OK, got it.

> 
> > +					ret = rte_eal_init(argc, argv);
> > +				}
> > +				if (ret < 0)
> > +					rte_exit(EXIT_FAILURE, "Invalid EAL
> arguments\n");
> > +
> > +				/* Check lcores. */
> > +				nb_lcores = rte_lcore_count();
> > +				if (nb_lcores < 2)
> > +					rte_exit(EXIT_FAILURE,
> > +						"There should be at least 2
> worker lcores.\n");
> > +
> > +				fd = fopen("./test_result.csv", "a");
> > +				if (!fd) {
> > +					printf("Open output CSV file error.\n");
> > +					return 0;
> > +				}
> > +
> > +				if (i == 0)
> > +					output_env_info();
> 
> Beware that you have a condition above to skip any test cases where "test_type
> == TEST_TYPE_NONE". Therefore, if the first test is of type NONE, the env_info
> will never be printed.

I'll fix it in the next version.

> 
> > +				run_test(i + 1, &test_cases[i]);
> > +
> > +				/* clean up the EAL */
> > +				rte_eal_cleanup();
> > +
> > +				fclose(fd);
> > +
> > +				printf("\nCase %u completed.\n", i + 1);
> > +
> > +				exit(EXIT_SUCCESS);
> > +			} else {
> > +				wpid = waitpid(cpid, &wstatus, 0);
> > +				if (wpid == -1) {
> > +					printf("waitpid error.\n");
> > +					exit(EXIT_FAILURE);
> > +				}
> > +
> > +				if (WIFEXITED(wstatus))
> > +					printf("Case process exited.
> status %d\n",
> > +						WEXITSTATUS(wstatus));
> > +				else if (WIFSIGNALED(wstatus))
> > +					printf("Case process killed by
> signal %d\n",
> > +						WTERMSIG(wstatus));
> > +				else if (WIFSTOPPED(wstatus))
> > +					printf("Case process stopped by
> signal %d\n",
> > +						WSTOPSIG(wstatus));
> > +				else if (WIFCONTINUED(wstatus))
> > +					printf("Case process continued.\n");
> > +				else
> > +					printf("Case process unknown
> terminated.\n");
> > +			}
> > +		}
> > +	}
> > +
> > +	printf("Bye...\n");
> > +	return 0;
> > +}
> > +
> > +#endif
> > diff --git a/app/test-dma-perf/main.h b/app/test-dma-perf/main.h new
> > file mode 100644 index 0000000000..a8fcf4f34d
> > --- /dev/null
> > +++ b/app/test-dma-perf/main.h
> > @@ -0,0 +1,57 @@
> > +/* SPDX-License-Identifier: BSD-3-Clause
> > + * Copyright(c) 2022 Intel Corporation  */
> > +
> > +#ifndef _MAIN_H_
> > +#define _MAIN_H_
> > +
> > +
> > +#include <rte_common.h>
> > +#include <rte_cycles.h>
> > +
> > +#ifndef __maybe_unused
> > +#define __maybe_unused	__rte_unused
> > +#endif
> > +
> > +#define MAX_WORKER_NB 128
> > +#define MAX_OUTPUT_STR_LEN 512
> > +
> > +#define RTE_LOGTYPE_DMA RTE_LOGTYPE_USER1
> > +
> 
> While there are a number of RTE_LOG calls in the app, I also see a number of
> regular printfs for output. Again, please standardize on one output - if using just
> printf, you can drop this line.

Sure, I'll fix it.

> 
> > +extern char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
> > +
> > +typedef enum {
> > +	OP_NONE = 0,
> > +	OP_ADD,
> > +	OP_MUL
> > +} alg_op_type;
> > +
> > +struct test_configure_entry {
> > +	uint32_t first;
> > +	uint32_t last;
> > +	uint32_t incr;
> > +	alg_op_type op;
> > +	uint32_t cur;
> > +};
> > +
> > +struct test_configure {
> > +	uint8_t test_type;
> > +	const char *test_type_str;
> > +	uint16_t src_numa_node;
> > +	uint16_t dst_numa_node;
> > +	uint16_t opcode;
> > +	bool is_dma;
> > +	struct test_configure_entry mem_size;
> > +	struct test_configure_entry buf_size;
> > +	struct test_configure_entry ring_size;
> > +	struct test_configure_entry kick_batch;
> > +	uint32_t cache_flush;
> > +	uint32_t nr_buf;
> > +	uint32_t repeat_times;
> > +	uint32_t nb_workers;
> > +	uint16_t mpool_iter_step;
> > +	const char *eal_args;
> > +	uint8_t scenario_id;
> > +};
> > +
> > +#endif /* _MAIN_H_ */
> > diff --git a/app/test-dma-perf/meson.build
> > b/app/test-dma-perf/meson.build new file mode 100644 index
> > 0000000000..001f67f6c1
> > --- /dev/null
> > +++ b/app/test-dma-perf/meson.build
> > @@ -0,0 +1,20 @@
> > +# SPDX-License-Identifier: BSD-3-Clause # Copyright(c) 2019-2022
> > +Intel Corporation
> 
> 2023 now

Got it.

> 
> > +
> > +# meson file, for building this example as part of a main DPDK build.
> > +#
> > +# To build this example as a standalone application with an
> > +already-installed # DPDK instance, use 'make'
> 
> Drop this comment. The test apps in "app" folder are for building as part of
> DPDK only, there is no makefile to use.

Sure.

> 
> > +
> > +if is_windows
> > +    build = false
> > +    reason = 'not supported on Windows'
> > +    subdir_done()
> > +endif
> > +
> > +deps += ['dmadev', 'mbuf', 'cfgfile']
> > +
> > +sources = files(
> > +        'main.c',
> > +        'benchmark.c',
> > +)
> > --
> > 2.35.1
> >
  
Jiang, Cheng1 Jan. 28, 2023, 1:32 p.m. UTC | #4
Hi Bruce,

Sorry for the late reply. We are in the Spring Festival holiday last week.
Thanks for your comments.
Replies are inline.

Thanks,
Cheng

> -----Original Message-----
> From: Richardson, Bruce <bruce.richardson@intel.com>
> Sent: Wednesday, January 18, 2023 12:52 AM
> To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> Cc: thomas@monjalon.net; mb@smartsharesystems.com; dev@dpdk.org; Hu,
> Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma, WenwuX
> <wenwux.ma@intel.com>; Wang, YuanX <yuanx.wang@intel.com>; He,
> Xingguang <xingguang.he@intel.com>
> Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> 
> On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> > There are many high-performance DMA devices supported in DPDK now, and
> > these DMA devices can also be integrated into other modules of DPDK as
> > accelerators, such as Vhost. Before integrating DMA into applications,
> > developers need to know the performance of these DMA devices in
> > various scenarios and the performance of CPUs in the same scenario,
> > such as different buffer lengths. Only in this way can we know the
> > target performance of the application accelerated by using them. This
> > patch introduces a high-performance testing tool, which supports
> > comparing the performance of CPU and DMA in different scenarios
> > automatically with a pre-set config file. Memory Copy performance test are
> supported for now.
> >
> > Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> > Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> > Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> > Acked-by: Morten Brørup <mb@smartsharesystems.com>
> > ---
> 
> More input based off trying running the application, including some thoughts on
> the testing methodology below.
> 
> 
> > +static void
> > +output_result(uint8_t scenario_id, uint32_t lcore_id, uint16_t dev_id,
> uint64_t ave_cycle,
> > +			uint32_t buf_size, uint32_t nr_buf, uint32_t memory,
> > +			float bandwidth, uint64_t ops, bool is_dma) {
> > +	if (is_dma)
> > +		printf("lcore %u, DMA %u:\n"
> > +				"average cycles: %" PRIu64 ","
> > +				" buffer size: %u, nr_buf: %u,"
> > +				" memory: %uMB, frequency: %" PRIu64 ".\n",
> > +				lcore_id,
> > +				dev_id,
> > +				ave_cycle,
> > +				buf_size,
> > +				nr_buf,
> > +				memory,
> > +				rte_get_timer_hz());
> > +	else
> > +		printf("lcore %u\n"
> > +			"average cycles: %" PRIu64 ","
> > +			" buffer size: %u, nr_buf: %u,"
> > +			" memory: %uMB, frequency: %" PRIu64 ".\n",
> > +			lcore_id,
> > +			ave_cycle,
> > +			buf_size,
> > +			nr_buf,
> > +			memory,
> > +			rte_get_timer_hz());
> > +
> 
> The term "average cycles" is unclear here - is it average cycles per test iteration,
> or average cycles per buffer copy?

The average cycles stands for average cycles per buffer copy, I'll clarify it in the next version.

> 
> 
> > +	printf("Average bandwidth: %.3lfGbps, OPS: %" PRIu64 "\n",
> > +bandwidth, ops);
> > +
> 
> <snip>
> 
> > +
> > +static inline void
> > +do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t kick_batch,
> uint32_t buf_size,
> > +			uint16_t mpool_iter_step, struct rte_mbuf **srcs,
> struct rte_mbuf
> > +**dsts) {
> > +	int64_t async_cnt = 0;
> > +	int nr_cpl = 0;
> > +	uint32_t index;
> > +	uint16_t offset;
> > +	uint32_t i;
> > +
> > +	for (offset = 0; offset < mpool_iter_step; offset++) {
> > +		for (i = 0; index = i * mpool_iter_step + offset, index < nr_buf;
> i++) {
> > +			if (unlikely(rte_dma_copy(dev_id,
> > +						0,
> > +						srcs[index]->buf_iova +
> srcs[index]->data_off,
> > +						dsts[index]->buf_iova +
> dsts[index]->data_off,
> > +						buf_size,
> > +						0) < 0)) {
> > +				rte_dma_submit(dev_id, 0);
> > +				while (rte_dma_burst_capacity(dev_id, 0) == 0)
> {
> > +					nr_cpl = rte_dma_completed(dev_id, 0,
> MAX_DMA_CPL_NB,
> > +								NULL, NULL);
> > +					async_cnt -= nr_cpl;
> > +				}
> > +				if (rte_dma_copy(dev_id,
> > +						0,
> > +						srcs[index]->buf_iova +
> srcs[index]->data_off,
> > +						dsts[index]->buf_iova +
> dsts[index]->data_off,
> > +						buf_size,
> > +						0) < 0) {
> > +					printf("enqueue fail again at %u\n",
> index);
> > +					printf("space:%d\n",
> rte_dma_burst_capacity(dev_id, 0));
> > +					rte_exit(EXIT_FAILURE, "DMA enqueue
> failed\n");
> > +				}
> > +			}
> > +			async_cnt++;
> > +
> > +			/**
> > +			 * When '&' is used to wrap an index, mask must be a
> power of 2.
> > +			 * That is, kick_batch must be 2^n.
> > +			 */
> > +			if (unlikely((async_cnt % kick_batch) == 0)) {
> > +				rte_dma_submit(dev_id, 0);
> > +				/* add a poll to avoid ring full */
> > +				nr_cpl = rte_dma_completed(dev_id, 0,
> MAX_DMA_CPL_NB, NULL, NULL);
> > +				async_cnt -= nr_cpl;
> > +			}
> > +		}
> > +
> > +		rte_dma_submit(dev_id, 0);
> > +		while (async_cnt > 0) {
> > +			nr_cpl = rte_dma_completed(dev_id, 0,
> MAX_DMA_CPL_NB, NULL, NULL);
> > +			async_cnt -= nr_cpl;
> > +		}
> 
> I have a couple of concerns about the methodology for testing the HW DMA
> performance. For example, the inclusion of that final block means that we are
> including the latency of the copy operation in the result.
> 
> If the objective of the test application is to determine if it is cheaper for
> software to offload a copy operation to HW or do it in SW, then the primary
> concern is the HW offload cost. That offload cost should remain constant
> irrespective of the size of the copy - since all you are doing is writing a descriptor
> and reading a completion result. However, seeing the results of running the app,
> I notice that the reported average cycles increases as the packet size increases,
> which would tend to indicate that we are not giving a realistic measurement of
> offload cost.

We are trying to compare the time required to complete a certain amount of
work using DMA with the time required to complete it using CPU. I think in addition
to the offload cost, the capability of the DMA itself is also an important factor to be considered.
The offload cost should be constant , but when DMA copies memory of different lengths,
the time costs are different. So the reported average cycles increases as the packet size increases.
Therefore, this test result includes both offload cost and DMA operation cost. To some extent,
it should be a relative realistic measurement result.

Do you think it makes sense to you?

> 
> The trouble then becomes how to do so in a more realistic manner. The most
> accurate way I can think of in a unit test like this is to offload <queue_size>
> entries to the device and measure the cycles taken there. Then wait until such
> time as all copies are completed (to eliminate the latency time, which in a real-
> world case would be spent by a core doing something else), and then do a
> second measurement of the time taken to process all the completions. In the
> same way as for a SW copy, any time not spent in memcpy is not copy time, for
> HW copies any time spent not writing descriptors or reading completions is not
> part of the offload cost.

Agreed, we are thinking about adding offload cost as one of test results in the future.

> 
> That said, doing the above is still not fully realistic, as a real-world app will likely
> still have some amount of other overhead, for example, polling occasionally for
> completions in between doing other work (though one would expect this to be
> relatively cheap).  Similarly, if the submission queue fills, the app may have to
> delay waiting for space to submit jobs, and therefore see some of the HW copy
> latency.
> 
> Therefore, I think the most realistic way to measure this is to look at the rate of
> operations while processing is being done in the middle of the test. For example,
> if we have a simple packet processing application, running the application just
> doing RX and TX and measuring the rate allows us to determine the basic packet
> I/O cost. Adding in an offload to HW for each packet and again measuring the
> rate, will then allow us to compute the true offload copy cost of the operation,
> and should give us a number that remains flat even as packet size increases. For
> previous work done on vhost with DMA acceleration, I believe we saw exactly
> that - while SW PPS reduced as packet size increased, with HW copies the PPS
> remained constant even as packet size increased.
> 
> The challenge to my mind, is therefore how to implement this in a suitable unit-
> test style way, to fit into the framework you have given here. I would suggest
> that the actual performance measurement needs to be done - not on a total
> time - but on a fixed time basis within each test. For example, when doing HW
> copies, 1ms into each test run, we need to snapshot the completed entries, and
> then say 1ms later measure the number that have been completed since. In this
> way, we avoid the initial startup latency while we wait for jobs to start
> completing, and we avoid the final latency as we await the last job to complete.
> We would also include time for some potentially empty polls, and if a queue size
> is too small see that reflected in the performance too.

I understand your concerns, but I think maybe we are not discussing the same performance number here.
We are trying to test the maximum bandwidth of DMA, and what you said is how to measure the offload cost more accurately if I understand it correctly.
I think these two performance data are both important. Maybe we can add your test methodology as one of performance aspect for
DMA in the future, I need to reconsider it and get back to you later.

Thanks a lot,
Cheng

> 
> Thoughts, input from others?
> 
> /Bruce
  
Bruce Richardson Jan. 30, 2023, 9:20 a.m. UTC | #5
On Sat, Jan 28, 2023 at 01:32:05PM +0000, Jiang, Cheng1 wrote:
> Hi Bruce,
> 
> Sorry for the late reply. We are in the Spring Festival holiday last week.
> Thanks for your comments.
> Replies are inline.
> 
> Thanks,
> Cheng
> 
> > -----Original Message-----
> > From: Richardson, Bruce <bruce.richardson@intel.com>
> > Sent: Wednesday, January 18, 2023 12:52 AM
> > To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> > Cc: thomas@monjalon.net; mb@smartsharesystems.com; dev@dpdk.org; Hu,
> > Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma, WenwuX
> > <wenwux.ma@intel.com>; Wang, YuanX <yuanx.wang@intel.com>; He,
> > Xingguang <xingguang.he@intel.com>
> > Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> > 
> > On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> > > There are many high-performance DMA devices supported in DPDK now, and
> > > these DMA devices can also be integrated into other modules of DPDK as
> > > accelerators, such as Vhost. Before integrating DMA into applications,
> > > developers need to know the performance of these DMA devices in
> > > various scenarios and the performance of CPUs in the same scenario,
> > > such as different buffer lengths. Only in this way can we know the
> > > target performance of the application accelerated by using them. This
> > > patch introduces a high-performance testing tool, which supports
> > > comparing the performance of CPU and DMA in different scenarios
> > > automatically with a pre-set config file. Memory Copy performance test are
> > supported for now.
> > >
> > > Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> > > Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> > > Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> > > Acked-by: Morten Brørup <mb@smartsharesystems.com>
> > > ---
> > 
> > More input based off trying running the application, including some thoughts on
> > the testing methodology below.
> > 
> > 
> > > +static void
> > > +output_result(uint8_t scenario_id, uint32_t lcore_id, uint16_t dev_id,
> > uint64_t ave_cycle,
> > > +			uint32_t buf_size, uint32_t nr_buf, uint32_t memory,
> > > +			float bandwidth, uint64_t ops, bool is_dma) {
> > > +	if (is_dma)
> > > +		printf("lcore %u, DMA %u:\n"
> > > +				"average cycles: %" PRIu64 ","
> > > +				" buffer size: %u, nr_buf: %u,"
> > > +				" memory: %uMB, frequency: %" PRIu64 ".\n",
> > > +				lcore_id,
> > > +				dev_id,
> > > +				ave_cycle,
> > > +				buf_size,
> > > +				nr_buf,
> > > +				memory,
> > > +				rte_get_timer_hz());
> > > +	else
> > > +		printf("lcore %u\n"
> > > +			"average cycles: %" PRIu64 ","
> > > +			" buffer size: %u, nr_buf: %u,"
> > > +			" memory: %uMB, frequency: %" PRIu64 ".\n",
> > > +			lcore_id,
> > > +			ave_cycle,
> > > +			buf_size,
> > > +			nr_buf,
> > > +			memory,
> > > +			rte_get_timer_hz());
> > > +
> > 
> > The term "average cycles" is unclear here - is it average cycles per test iteration,
> > or average cycles per buffer copy?
> 
> The average cycles stands for average cycles per buffer copy, I'll clarify it in the next version.
> 
> > 
> > 
> > > +	printf("Average bandwidth: %.3lfGbps, OPS: %" PRIu64 "\n",
> > > +bandwidth, ops);
> > > +
> > 
> > <snip>
> > 
> > > +
> > > +static inline void
> > > +do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t kick_batch,
> > uint32_t buf_size,
> > > +			uint16_t mpool_iter_step, struct rte_mbuf **srcs,
> > struct rte_mbuf
> > > +**dsts) {
> > > +	int64_t async_cnt = 0;
> > > +	int nr_cpl = 0;
> > > +	uint32_t index;
> > > +	uint16_t offset;
> > > +	uint32_t i;
> > > +
> > > +	for (offset = 0; offset < mpool_iter_step; offset++) {
> > > +		for (i = 0; index = i * mpool_iter_step + offset, index < nr_buf;
> > i++) {
> > > +			if (unlikely(rte_dma_copy(dev_id,
> > > +						0,
> > > +						srcs[index]->buf_iova +
> > srcs[index]->data_off,
> > > +						dsts[index]->buf_iova +
> > dsts[index]->data_off,
> > > +						buf_size,
> > > +						0) < 0)) {
> > > +				rte_dma_submit(dev_id, 0);
> > > +				while (rte_dma_burst_capacity(dev_id, 0) == 0)
> > {
> > > +					nr_cpl = rte_dma_completed(dev_id, 0,
> > MAX_DMA_CPL_NB,
> > > +								NULL, NULL);
> > > +					async_cnt -= nr_cpl;
> > > +				}
> > > +				if (rte_dma_copy(dev_id,
> > > +						0,
> > > +						srcs[index]->buf_iova +
> > srcs[index]->data_off,
> > > +						dsts[index]->buf_iova +
> > dsts[index]->data_off,
> > > +						buf_size,
> > > +						0) < 0) {
> > > +					printf("enqueue fail again at %u\n",
> > index);
> > > +					printf("space:%d\n",
> > rte_dma_burst_capacity(dev_id, 0));
> > > +					rte_exit(EXIT_FAILURE, "DMA enqueue
> > failed\n");
> > > +				}
> > > +			}
> > > +			async_cnt++;
> > > +
> > > +			/**
> > > +			 * When '&' is used to wrap an index, mask must be a
> > power of 2.
> > > +			 * That is, kick_batch must be 2^n.
> > > +			 */
> > > +			if (unlikely((async_cnt % kick_batch) == 0)) {
> > > +				rte_dma_submit(dev_id, 0);
> > > +				/* add a poll to avoid ring full */
> > > +				nr_cpl = rte_dma_completed(dev_id, 0,
> > MAX_DMA_CPL_NB, NULL, NULL);
> > > +				async_cnt -= nr_cpl;
> > > +			}
> > > +		}
> > > +
> > > +		rte_dma_submit(dev_id, 0);
> > > +		while (async_cnt > 0) {
> > > +			nr_cpl = rte_dma_completed(dev_id, 0,
> > MAX_DMA_CPL_NB, NULL, NULL);
> > > +			async_cnt -= nr_cpl;
> > > +		}
> > 
> > I have a couple of concerns about the methodology for testing the HW DMA
> > performance. For example, the inclusion of that final block means that we are
> > including the latency of the copy operation in the result.
> > 
> > If the objective of the test application is to determine if it is cheaper for
> > software to offload a copy operation to HW or do it in SW, then the primary
> > concern is the HW offload cost. That offload cost should remain constant
> > irrespective of the size of the copy - since all you are doing is writing a descriptor
> > and reading a completion result. However, seeing the results of running the app,
> > I notice that the reported average cycles increases as the packet size increases,
> > which would tend to indicate that we are not giving a realistic measurement of
> > offload cost.
> 
> We are trying to compare the time required to complete a certain amount of
> work using DMA with the time required to complete it using CPU. I think in addition
> to the offload cost, the capability of the DMA itself is also an important factor to be considered.
> The offload cost should be constant , but when DMA copies memory of different lengths,
> the time costs are different. So the reported average cycles increases as the packet size increases.
> Therefore, this test result includes both offload cost and DMA operation cost. To some extent,
> it should be a relative realistic measurement result.
> 
> Do you think it makes sense to you?
> 

Hi,

Yes, I get your point about the job latency being different when the
packet/copy sizes increase, but on the other hand, as I state above the
actual cycle cost to the application should not increase. If any
application is doing what this test app is doing, just sitting around
waiting for job completion (in the fast path), then it is likely that the
programmer should look at improving the offload into the app.

The main issue here is that by outputting a single number, you are mixing
two separate values - both offload cost and job latency. If you want to
show the effects of larger/smaller packets on both, then you should output
both values separately. For most applications where you will offload copies
and do other work while the copy is being done, the offload cost is of
primary concern. For some applications the latency figure may also be
important, but in those cases the user will want to see the latency called
out explicitly, not just mixed up in a single figure with offload cost.

> > 
> > The trouble then becomes how to do so in a more realistic manner. The most
> > accurate way I can think of in a unit test like this is to offload <queue_size>
> > entries to the device and measure the cycles taken there. Then wait until such
> > time as all copies are completed (to eliminate the latency time, which in a real-
> > world case would be spent by a core doing something else), and then do a
> > second measurement of the time taken to process all the completions. In the
> > same way as for a SW copy, any time not spent in memcpy is not copy time, for
> > HW copies any time spent not writing descriptors or reading completions is not
> > part of the offload cost.
> 
> Agreed, we are thinking about adding offload cost as one of test results in the future.
> 
> > 
> > That said, doing the above is still not fully realistic, as a real-world app will likely
> > still have some amount of other overhead, for example, polling occasionally for
> > completions in between doing other work (though one would expect this to be
> > relatively cheap).  Similarly, if the submission queue fills, the app may have to
> > delay waiting for space to submit jobs, and therefore see some of the HW copy
> > latency.
> > 
> > Therefore, I think the most realistic way to measure this is to look at the rate of
> > operations while processing is being done in the middle of the test. For example,
> > if we have a simple packet processing application, running the application just
> > doing RX and TX and measuring the rate allows us to determine the basic packet
> > I/O cost. Adding in an offload to HW for each packet and again measuring the
> > rate, will then allow us to compute the true offload copy cost of the operation,
> > and should give us a number that remains flat even as packet size increases. For
> > previous work done on vhost with DMA acceleration, I believe we saw exactly
> > that - while SW PPS reduced as packet size increased, with HW copies the PPS
> > remained constant even as packet size increased.
> > 
> > The challenge to my mind, is therefore how to implement this in a suitable unit-
> > test style way, to fit into the framework you have given here. I would suggest
> > that the actual performance measurement needs to be done - not on a total
> > time - but on a fixed time basis within each test. For example, when doing HW
> > copies, 1ms into each test run, we need to snapshot the completed entries, and
> > then say 1ms later measure the number that have been completed since. In this
> > way, we avoid the initial startup latency while we wait for jobs to start
> > completing, and we avoid the final latency as we await the last job to complete.
> > We would also include time for some potentially empty polls, and if a queue size
> > is too small see that reflected in the performance too.
> 
> I understand your concerns, but I think maybe we are not discussing the same performance number here.
> We are trying to test the maximum bandwidth of DMA, and what you said is how to measure the offload cost more accurately if I understand it correctly.
> I think these two performance data are both important. Maybe we can add your test methodology as one of performance aspect for
> DMA in the future, I need to reconsider it and get back to you later.
> 

Max bandwidth of HW is a third and separate number from that of
offload-cost and latency. Again, it should be measured and reported separately
if you want the app to provide it.

Regards,

/Bruce
  
Hu, Jiayu Jan. 31, 2023, 5:27 a.m. UTC | #6
Hi Bruce,

> -----Original Message-----
> From: Richardson, Bruce <bruce.richardson@intel.com>
> Sent: Wednesday, January 18, 2023 12:52 AM
> To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> Cc: thomas@monjalon.net; mb@smartsharesystems.com; dev@dpdk.org;
> Hu, Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma,
> WenwuX <wenwux.ma@intel.com>; Wang, YuanX
> <yuanx.wang@intel.com>; He, Xingguang <xingguang.he@intel.com>
> Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> 
+
> > +static inline void
> > +do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t
> kick_batch, uint32_t buf_size,
> > +			uint16_t mpool_iter_step, struct rte_mbuf **srcs,
> struct rte_mbuf
> > +**dsts) {
> > +	int64_t async_cnt = 0;
> > +	int nr_cpl = 0;
> > +	uint32_t index;
> > +	uint16_t offset;
> > +	uint32_t i;
> > +
> > +	for (offset = 0; offset < mpool_iter_step; offset++) {
> > +		for (i = 0; index = i * mpool_iter_step + offset, index < nr_buf;
> i++) {
> > +			if (unlikely(rte_dma_copy(dev_id,
> > +						0,
> > +						srcs[index]->buf_iova +
> srcs[index]->data_off,
> > +						dsts[index]->buf_iova +
> dsts[index]->data_off,
> > +						buf_size,
> > +						0) < 0)) {
> > +				rte_dma_submit(dev_id, 0);
> > +				while (rte_dma_burst_capacity(dev_id, 0) ==
> 0) {
> > +					nr_cpl = rte_dma_completed(dev_id,
> 0, MAX_DMA_CPL_NB,
> > +								NULL, NULL);
> > +					async_cnt -= nr_cpl;
> > +				}
> > +				if (rte_dma_copy(dev_id,
> > +						0,
> > +						srcs[index]->buf_iova +
> srcs[index]->data_off,
> > +						dsts[index]->buf_iova +
> dsts[index]->data_off,
> > +						buf_size,
> > +						0) < 0) {
> > +					printf("enqueue fail again at %u\n",
> index);
> > +					printf("space:%d\n",
> rte_dma_burst_capacity(dev_id, 0));
> > +					rte_exit(EXIT_FAILURE, "DMA
> enqueue failed\n");
> > +				}
> > +			}
> > +			async_cnt++;
> > +
> > +			/**
> > +			 * When '&' is used to wrap an index, mask must be a
> power of 2.
> > +			 * That is, kick_batch must be 2^n.
> > +			 */
> > +			if (unlikely((async_cnt % kick_batch) == 0)) {
> > +				rte_dma_submit(dev_id, 0);
> > +				/* add a poll to avoid ring full */
> > +				nr_cpl = rte_dma_completed(dev_id, 0,
> MAX_DMA_CPL_NB, NULL, NULL);
> > +				async_cnt -= nr_cpl;
> > +			}
> > +		}
> > +
> > +		rte_dma_submit(dev_id, 0);
> > +		while (async_cnt > 0) {
> > +			nr_cpl = rte_dma_completed(dev_id, 0,
> MAX_DMA_CPL_NB, NULL, NULL);
> > +			async_cnt -= nr_cpl;
> > +		}
> 
> I have a couple of concerns about the methodology for testing the HW DMA
> performance. For example, the inclusion of that final block means that we
> are including the latency of the copy operation in the result.

The waiting time will not exceed the time of completing <SW queue size> jobs.
We also introduce initial startup time of waiting DMA starts to complete jobs.
But if the total jobs are massive, we can ignore the impact of them. However,
the problem is that we cannot guarantee it in current implementation, especially
when memory footprint is small.

> 
> If the objective of the test application is to determine if it is cheaper for
> software to offload a copy operation to HW or do it in SW, then the primary
> concern is the HW offload cost. That offload cost should remain constant
> irrespective of the size of the copy - since all you are doing is writing a
> descriptor and reading a completion result. However, seeing the results of
> running the app, I notice that the reported average cycles increases as the
> packet size increases, which would tend to indicate that we are not giving a
> realistic measurement of offload cost.

I agree with the point that offload cost is very important. When using DMA
in an async manner, for N jobs, total DMA processing cycles, total offload cost
cycles, and total core higher-level processing cycles determine the final
performance. The total offload cost can be roughly calculated by the average
offload cost times the number of offloading operations. And as a benchmark tool,
we can provide the average offload cost (i.e., total cycle of one submit, one kick
and one poll function call) which is irrespective of copy size. For example, for
1024 jobs and batch size 16, the total offload cost is 64 (1024/32) times average
offload cost.

Repeat 64 times {
	submit 16 jobs; // always success
	kick;
	poll; // 16 jobs are done
}

As you pointed out, the above estimation method may become not accurate if
applications call poll function occasionally or wait for space when fail to submit.
But offload cost is still a very important value for applications, as it shows the
basic cost of using DPDK dmadev library and it also provides a rough estimation
for applications.

> 
> The trouble then becomes how to do so in a more realistic manner. The most
> accurate way I can think of in a unit test like this is to offload <queue_size>
> entries to the device and measure the cycles taken there. Then wait until
> such time as all copies are completed (to eliminate the latency time, which in
> a real-world case would be spent by a core doing something else), and then
> do a second measurement of the time taken to process all the completions.
> In the same way as for a SW copy, any time not spent in memcpy is not copy
> time, for HW copies any time spent not writing descriptors or reading
> completions is not part of the offload cost.
> 
> That said, doing the above is still not fully realistic, as a real-world app will
> likely still have some amount of other overhead, for example, polling
> occasionally for completions in between doing other work (though one
> would expect this to be relatively cheap).  Similarly, if the submission queue
> fills, the app may have to delay waiting for space to submit jobs, and
> therefore see some of the HW copy latency.
> 
> Therefore, I think the most realistic way to measure this is to look at the rate
> of operations while processing is being done in the middle of the test. For
> example, if we have a simple packet processing application, running the
> application just doing RX and TX and measuring the rate allows us to
> determine the basic packet I/O cost. Adding in an offload to HW for each
> packet and again measuring the rate, will then allow us to compute the true
> offload copy cost of the operation, and should give us a number that remains
> flat even as packet size increases. For previous work done on vhost with
> DMA acceleration, I believe we saw exactly that - while SW PPS reduced as
> packet size increased, with HW copies the PPS remained constant even as
> packet size increased.
> 
> The challenge to my mind, is therefore how to implement this in a suitable
> unit-test style way, to fit into the framework you have given here. I would
> suggest that the actual performance measurement needs to be done - not
> on a total time - but on a fixed time basis within each test. For example,
> when doing HW copies, 1ms into each test run, we need to snapshot the
> completed entries, and then say 1ms later measure the number that have
> been completed since. In this way, we avoid the initial startup latency while
> we wait for jobs to start completing, and we avoid the final latency as we
> await the last job to complete. We would also include time for some
> potentially empty polls, and if a queue size is too small see that reflected in
> the performance too.

The method you mentioned above is like how we measure NIC RX/TX PPS,
where the main thread is in charge of snapshotting the completed jobs for a fixed
time for all worker threads. But the trouble is when to finish one test, as current
framework runs N test cases till all are completed. We may fix the testing time per
case, like 1s, and in each test, the core repeatedly feeds N jobs to DMA until running
out of the time.

Lastly, I want to point out is that the current DMA throughput is tested in an async
manner. The result will be different when using a sync manner. So the benchmark
tool need to tell user it in the final results.

Thanks,
Jiayu
> 
> Thoughts, input from others?
> 
> /Bruce
  
Jiang, Cheng1 Feb. 6, 2023, 2:20 p.m. UTC | #7
Hi Bruce,

Replies are inline,

Thank,
Cheng

> -----Original Message-----
> From: Richardson, Bruce <bruce.richardson@intel.com>
> Sent: Monday, January 30, 2023 5:20 PM
> To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> Cc: thomas@monjalon.net; mb@smartsharesystems.com; dev@dpdk.org;
> Hu, Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma,
> WenwuX <wenwux.ma@intel.com>; Wang, YuanX
> <yuanx.wang@intel.com>; He, Xingguang <xingguang.he@intel.com>
> Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> 
> On Sat, Jan 28, 2023 at 01:32:05PM +0000, Jiang, Cheng1 wrote:
> > Hi Bruce,
> >
> > Sorry for the late reply. We are in the Spring Festival holiday last week.
> > Thanks for your comments.
> > Replies are inline.
> >
> > Thanks,
> > Cheng
> >
> > > -----Original Message-----
> > > From: Richardson, Bruce <bruce.richardson@intel.com>
> > > Sent: Wednesday, January 18, 2023 12:52 AM
> > > To: Jiang, Cheng1 <cheng1.jiang@intel.com>
> > > Cc: thomas@monjalon.net; mb@smartsharesystems.com;
> dev@dpdk.org; Hu,
> > > Jiayu <jiayu.hu@intel.com>; Ding, Xuan <xuan.ding@intel.com>; Ma,
> > > WenwuX <wenwux.ma@intel.com>; Wang, YuanX
> <yuanx.wang@intel.com>;
> > > He, Xingguang <xingguang.he@intel.com>
> > > Subject: Re: [PATCH v3] app/dma-perf: introduce dma-perf application
> > >
> > > On Tue, Jan 17, 2023 at 12:05:26PM +0000, Cheng Jiang wrote:
> > > > There are many high-performance DMA devices supported in DPDK
> now,
> > > > and these DMA devices can also be integrated into other modules of
> > > > DPDK as accelerators, such as Vhost. Before integrating DMA into
> > > > applications, developers need to know the performance of these DMA
> > > > devices in various scenarios and the performance of CPUs in the
> > > > same scenario, such as different buffer lengths. Only in this way
> > > > can we know the target performance of the application accelerated
> > > > by using them. This patch introduces a high-performance testing
> > > > tool, which supports comparing the performance of CPU and DMA in
> > > > different scenarios automatically with a pre-set config file.
> > > > Memory Copy performance test are
> > > supported for now.
> > > >
> > > > Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
> > > > Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
> > > > Signed-off-by: Yuan Wang <yuanx.wang@intel.com>
> > > > Acked-by: Morten Brørup <mb@smartsharesystems.com>
> > > > ---
> > >
> > > More input based off trying running the application, including some
> > > thoughts on the testing methodology below.
> > >
> > >
> > > > +static void
> > > > +output_result(uint8_t scenario_id, uint32_t lcore_id, uint16_t
> > > > +dev_id,
> > > uint64_t ave_cycle,
> > > > +			uint32_t buf_size, uint32_t nr_buf, uint32_t memory,
> > > > +			float bandwidth, uint64_t ops, bool is_dma) {
> > > > +	if (is_dma)
> > > > +		printf("lcore %u, DMA %u:\n"
> > > > +				"average cycles: %" PRIu64 ","
> > > > +				" buffer size: %u, nr_buf: %u,"
> > > > +				" memory: %uMB, frequency: %" PRIu64
> ".\n",
> > > > +				lcore_id,
> > > > +				dev_id,
> > > > +				ave_cycle,
> > > > +				buf_size,
> > > > +				nr_buf,
> > > > +				memory,
> > > > +				rte_get_timer_hz());
> > > > +	else
> > > > +		printf("lcore %u\n"
> > > > +			"average cycles: %" PRIu64 ","
> > > > +			" buffer size: %u, nr_buf: %u,"
> > > > +			" memory: %uMB, frequency: %" PRIu64 ".\n",
> > > > +			lcore_id,
> > > > +			ave_cycle,
> > > > +			buf_size,
> > > > +			nr_buf,
> > > > +			memory,
> > > > +			rte_get_timer_hz());
> > > > +
> > >
> > > The term "average cycles" is unclear here - is it average cycles per
> > > test iteration, or average cycles per buffer copy?
> >
> > The average cycles stands for average cycles per buffer copy, I'll clarify it in
> the next version.
> >
> > >
> > >
> > > > +	printf("Average bandwidth: %.3lfGbps, OPS: %" PRIu64 "\n",
> > > > +bandwidth, ops);
> > > > +
> > >
> > > <snip>
> > >
> > > > +
> > > > +static inline void
> > > > +do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t
> > > > +kick_batch,
> > > uint32_t buf_size,
> > > > +			uint16_t mpool_iter_step, struct rte_mbuf **srcs,
> > > struct rte_mbuf
> > > > +**dsts) {
> > > > +	int64_t async_cnt = 0;
> > > > +	int nr_cpl = 0;
> > > > +	uint32_t index;
> > > > +	uint16_t offset;
> > > > +	uint32_t i;
> > > > +
> > > > +	for (offset = 0; offset < mpool_iter_step; offset++) {
> > > > +		for (i = 0; index = i * mpool_iter_step + offset, index <
> > > > +nr_buf;
> > > i++) {
> > > > +			if (unlikely(rte_dma_copy(dev_id,
> > > > +						0,
> > > > +						srcs[index]->buf_iova +
> > > srcs[index]->data_off,
> > > > +						dsts[index]->buf_iova +
> > > dsts[index]->data_off,
> > > > +						buf_size,
> > > > +						0) < 0)) {
> > > > +				rte_dma_submit(dev_id, 0);
> > > > +				while (rte_dma_burst_capacity(dev_id, 0) ==
> 0)
> > > {
> > > > +					nr_cpl = rte_dma_completed(dev_id,
> 0,
> > > MAX_DMA_CPL_NB,
> > > > +								NULL, NULL);
> > > > +					async_cnt -= nr_cpl;
> > > > +				}
> > > > +				if (rte_dma_copy(dev_id,
> > > > +						0,
> > > > +						srcs[index]->buf_iova +
> > > srcs[index]->data_off,
> > > > +						dsts[index]->buf_iova +
> > > dsts[index]->data_off,
> > > > +						buf_size,
> > > > +						0) < 0) {
> > > > +					printf("enqueue fail again at %u\n",
> > > index);
> > > > +					printf("space:%d\n",
> > > rte_dma_burst_capacity(dev_id, 0));
> > > > +					rte_exit(EXIT_FAILURE, "DMA
> enqueue
> > > failed\n");
> > > > +				}
> > > > +			}
> > > > +			async_cnt++;
> > > > +
> > > > +			/**
> > > > +			 * When '&' is used to wrap an index, mask must be a
> > > power of 2.
> > > > +			 * That is, kick_batch must be 2^n.
> > > > +			 */
> > > > +			if (unlikely((async_cnt % kick_batch) == 0)) {
> > > > +				rte_dma_submit(dev_id, 0);
> > > > +				/* add a poll to avoid ring full */
> > > > +				nr_cpl = rte_dma_completed(dev_id, 0,
> > > MAX_DMA_CPL_NB, NULL, NULL);
> > > > +				async_cnt -= nr_cpl;
> > > > +			}
> > > > +		}
> > > > +
> > > > +		rte_dma_submit(dev_id, 0);
> > > > +		while (async_cnt > 0) {
> > > > +			nr_cpl = rte_dma_completed(dev_id, 0,
> > > MAX_DMA_CPL_NB, NULL, NULL);
> > > > +			async_cnt -= nr_cpl;
> > > > +		}
> > >
> > > I have a couple of concerns about the methodology for testing the HW
> > > DMA performance. For example, the inclusion of that final block
> > > means that we are including the latency of the copy operation in the
> result.
> > >
> > > If the objective of the test application is to determine if it is
> > > cheaper for software to offload a copy operation to HW or do it in
> > > SW, then the primary concern is the HW offload cost. That offload
> > > cost should remain constant irrespective of the size of the copy -
> > > since all you are doing is writing a descriptor and reading a
> > > completion result. However, seeing the results of running the app, I
> > > notice that the reported average cycles increases as the packet size
> > > increases, which would tend to indicate that we are not giving a realistic
> measurement of offload cost.
> >
> > We are trying to compare the time required to complete a certain
> > amount of work using DMA with the time required to complete it using
> > CPU. I think in addition to the offload cost, the capability of the DMA itself
> is also an important factor to be considered.
> > The offload cost should be constant , but when DMA copies memory of
> > different lengths, the time costs are different. So the reported average
> cycles increases as the packet size increases.
> > Therefore, this test result includes both offload cost and DMA
> > operation cost. To some extent, it should be a relative realistic
> measurement result.
> >
> > Do you think it makes sense to you?
> >
> 
> Hi,
> 
> Yes, I get your point about the job latency being different when the
> packet/copy sizes increase, but on the other hand, as I state above the actual
> cycle cost to the application should not increase. If any application is doing
> what this test app is doing, just sitting around waiting for job completion (in
> the fast path), then it is likely that the programmer should look at improving
> the offload into the app.
> 
> The main issue here is that by outputting a single number, you are mixing
> two separate values - both offload cost and job latency. If you want to show
> the effects of larger/smaller packets on both, then you should output both
> values separately. For most applications where you will offload copies and do
> other work while the copy is being done, the offload cost is of primary
> concern. For some applications the latency figure may also be important, but
> in those cases the user will want to see the latency called out explicitly, not
> just mixed up in a single figure with offload cost.

Sure, makes sense to me, thanks.

> 
> > >
> > > The trouble then becomes how to do so in a more realistic manner.
> > > The most accurate way I can think of in a unit test like this is to
> > > offload <queue_size> entries to the device and measure the cycles
> > > taken there. Then wait until such time as all copies are completed
> > > (to eliminate the latency time, which in a real- world case would be
> > > spent by a core doing something else), and then do a second
> > > measurement of the time taken to process all the completions. In the
> > > same way as for a SW copy, any time not spent in memcpy is not copy
> > > time, for HW copies any time spent not writing descriptors or reading
> completions is not part of the offload cost.
> >
> > Agreed, we are thinking about adding offload cost as one of test results in
> the future.
> >
> > >
> > > That said, doing the above is still not fully realistic, as a
> > > real-world app will likely still have some amount of other overhead,
> > > for example, polling occasionally for completions in between doing
> > > other work (though one would expect this to be relatively cheap).
> > > Similarly, if the submission queue fills, the app may have to delay
> > > waiting for space to submit jobs, and therefore see some of the HW copy
> latency.
> > >
> > > Therefore, I think the most realistic way to measure this is to look
> > > at the rate of operations while processing is being done in the
> > > middle of the test. For example, if we have a simple packet
> > > processing application, running the application just doing RX and TX
> > > and measuring the rate allows us to determine the basic packet I/O
> > > cost. Adding in an offload to HW for each packet and again measuring
> > > the rate, will then allow us to compute the true offload copy cost
> > > of the operation, and should give us a number that remains flat even
> > > as packet size increases. For previous work done on vhost with DMA
> > > acceleration, I believe we saw exactly that - while SW PPS reduced as
> packet size increased, with HW copies the PPS remained constant even as
> packet size increased.
> > >
> > > The challenge to my mind, is therefore how to implement this in a
> > > suitable unit- test style way, to fit into the framework you have
> > > given here. I would suggest that the actual performance measurement
> > > needs to be done - not on a total time - but on a fixed time basis
> > > within each test. For example, when doing HW copies, 1ms into each
> > > test run, we need to snapshot the completed entries, and then say
> > > 1ms later measure the number that have been completed since. In this
> > > way, we avoid the initial startup latency while we wait for jobs to start
> completing, and we avoid the final latency as we await the last job to
> complete.
> > > We would also include time for some potentially empty polls, and if
> > > a queue size is too small see that reflected in the performance too.
> >
> > I understand your concerns, but I think maybe we are not discussing the
> same performance number here.
> > We are trying to test the maximum bandwidth of DMA, and what you said
> is how to measure the offload cost more accurately if I understand it
> correctly.
> > I think these two performance data are both important. Maybe we can
> > add your test methodology as one of performance aspect for DMA in the
> future, I need to reconsider it and get back to you later.
> >
> 
> Max bandwidth of HW is a third and separate number from that of offload-
> cost and latency. Again, it should be measured and reported separately if you
> want the app to provide it.

OK, got it. We will try to implement such test method in the next version.

Thanks.
Cheng

> 
> Regards,
> 
> /Bruce
  

Patch

diff --git a/app/meson.build b/app/meson.build
index e32ea4bd5c..a060ad2725 100644
--- a/app/meson.build
+++ b/app/meson.build
@@ -28,6 +28,7 @@  apps = [
         'test-regex',
         'test-sad',
         'test-security-perf',
+        'test-dma-perf',
 ]

 default_cflags = machine_args + ['-DALLOW_EXPERIMENTAL_API']
diff --git a/app/test-dma-perf/benchmark.c b/app/test-dma-perf/benchmark.c
new file mode 100644
index 0000000000..7ec3f95643
--- /dev/null
+++ b/app/test-dma-perf/benchmark.c
@@ -0,0 +1,541 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+#include <inttypes.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <rte_time.h>
+#include <rte_mbuf.h>
+#include <rte_dmadev.h>
+#include <rte_malloc.h>
+#include <rte_lcore.h>
+
+#include "main.h"
+#include "benchmark.h"
+
+
+#define MAX_DMA_CPL_NB 255
+
+#define CSV_LINE_DMA_FMT "Scenario %u,%u,%u,%u,%u,%u,%" PRIu64 ",%.3lf,%" PRIu64 "\n"
+#define CSV_LINE_CPU_FMT "Scenario %u,%u,NA,%u,%u,%u,%" PRIu64 ",%.3lf,%" PRIu64 "\n"
+
+struct lcore_params {
+	uint16_t dev_id;
+	uint32_t nr_buf;
+	uint16_t kick_batch;
+	uint32_t buf_size;
+	uint32_t repeat_times;
+	uint16_t mpool_iter_step;
+	struct rte_mbuf **srcs;
+	struct rte_mbuf **dsts;
+	uint8_t scenario_id;
+};
+
+struct buf_info {
+	struct rte_mbuf **array;
+	uint32_t nr_buf;
+	uint32_t buf_size;
+};
+
+static struct rte_mempool *src_pool;
+static struct rte_mempool *dst_pool;
+
+uint16_t dmadev_ids[MAX_WORKER_NB];
+uint32_t nb_dmadevs;
+
+#define PRINT_ERR(...) print_err(__func__, __LINE__, __VA_ARGS__)
+
+static inline int
+__rte_format_printf(3, 4)
+print_err(const char *func, int lineno, const char *format, ...)
+{
+	va_list ap;
+	int ret;
+
+	ret = fprintf(stderr, "In %s:%d - ", func, lineno);
+	va_start(ap, format);
+	ret += vfprintf(stderr, format, ap);
+	va_end(ap);
+
+	return ret;
+}
+
+static inline void
+calc_result(struct lcore_params *p, uint64_t cp_cycle_sum, double time_sec,
+			uint32_t repeat_times, uint32_t *memory, uint64_t *ave_cycle,
+			float *bandwidth, uint64_t *ops)
+{
+	*memory = (p->buf_size * p->nr_buf * 2) / (1024 * 1024);
+	*ave_cycle = cp_cycle_sum / (p->repeat_times * p->nr_buf);
+	*bandwidth = p->buf_size * 8 * rte_get_timer_hz() / (*ave_cycle * 1000 * 1000 * 1000.0);
+	*ops = (double)p->nr_buf * repeat_times / time_sec;
+}
+
+static void
+output_result(uint8_t scenario_id, uint32_t lcore_id, uint16_t dev_id, uint64_t ave_cycle,
+			uint32_t buf_size, uint32_t nr_buf, uint32_t memory,
+			float bandwidth, uint64_t ops, bool is_dma)
+{
+	if (is_dma)
+		printf("lcore %u, DMA %u:\n"
+				"average cycles: %" PRIu64 ","
+				" buffer size: %u, nr_buf: %u,"
+				" memory: %uMB, frequency: %" PRIu64 ".\n",
+				lcore_id,
+				dev_id,
+				ave_cycle,
+				buf_size,
+				nr_buf,
+				memory,
+				rte_get_timer_hz());
+	else
+		printf("lcore %u\n"
+			"average cycles: %" PRIu64 ","
+			" buffer size: %u, nr_buf: %u,"
+			" memory: %uMB, frequency: %" PRIu64 ".\n",
+			lcore_id,
+			ave_cycle,
+			buf_size,
+			nr_buf,
+			memory,
+			rte_get_timer_hz());
+
+	printf("Average bandwidth: %.3lfGbps, OPS: %" PRIu64 "\n", bandwidth, ops);
+
+	if (is_dma)
+		snprintf(output_str[lcore_id], MAX_OUTPUT_STR_LEN,
+			CSV_LINE_DMA_FMT,
+			scenario_id, lcore_id, dev_id, buf_size,
+			nr_buf, memory, ave_cycle, bandwidth, ops);
+	else
+		snprintf(output_str[lcore_id], MAX_OUTPUT_STR_LEN,
+			CSV_LINE_CPU_FMT,
+			scenario_id, lcore_id, buf_size,
+			nr_buf, memory, ave_cycle, bandwidth, ops);
+}
+
+static inline void
+cache_flush_buf(void *arg __maybe_unused)
+{
+#ifdef RTE_ARCH_X86_64
+	char *data;
+	char *addr;
+	struct buf_info *info = arg;
+	struct rte_mbuf **srcs = info->array;
+	uint32_t i, k;
+
+	for (i = 0; i < info->nr_buf; i++) {
+		data = rte_pktmbuf_mtod(srcs[i], char *);
+		for (k = 0; k < info->buf_size / 64; k++) {
+			addr = (k * 64 + data);
+			__builtin_ia32_clflush(addr);
+		}
+	}
+#endif
+}
+
+/* Configuration of device. */
+static void
+configure_dmadev_queue(uint32_t dev_id, uint32_t ring_size)
+{
+	uint16_t vchan = 0;
+	struct rte_dma_info info;
+	struct rte_dma_conf dev_config = { .nb_vchans = 1 };
+	struct rte_dma_vchan_conf qconf = {
+		.direction = RTE_DMA_DIR_MEM_TO_MEM,
+		.nb_desc = ring_size
+	};
+
+	if (rte_dma_configure(dev_id, &dev_config) != 0)
+		rte_exit(EXIT_FAILURE, "Error with rte_dma_configure()\n");
+
+	if (rte_dma_vchan_setup(dev_id, vchan, &qconf) != 0) {
+		printf("Error with queue configuration\n");
+		rte_panic();
+	}
+
+	rte_dma_info_get(dev_id, &info);
+	if (info.nb_vchans != 1) {
+		printf("Error, no configured queues reported on device id %u\n", dev_id);
+		rte_panic();
+	}
+	if (rte_dma_start(dev_id) != 0)
+		rte_exit(EXIT_FAILURE, "Error with rte_dma_start()\n");
+}
+
+static int
+config_dmadevs(uint32_t nb_workers, uint32_t ring_size)
+{
+	int16_t dev_id = rte_dma_next_dev(0);
+	uint32_t i;
+
+	nb_dmadevs = 0;
+
+	for (i = 0; i < nb_workers; i++) {
+		if (dev_id == -1)
+			goto end;
+
+		dmadev_ids[i] = dev_id;
+		configure_dmadev_queue(dmadev_ids[i], ring_size);
+		dev_id = rte_dma_next_dev(dev_id + 1);
+		++nb_dmadevs;
+	}
+
+end:
+	if (nb_dmadevs < nb_workers) {
+		printf("Not enough dmadevs (%u) for all workers (%u).\n", nb_dmadevs, nb_workers);
+		return -1;
+	}
+
+	RTE_LOG(INFO, DMA, "Number of used dmadevs: %u.\n", nb_dmadevs);
+
+	return 0;
+}
+
+static inline void
+do_dma_mem_copy(uint16_t dev_id, uint32_t nr_buf, uint16_t kick_batch, uint32_t buf_size,
+			uint16_t mpool_iter_step, struct rte_mbuf **srcs, struct rte_mbuf **dsts)
+{
+	int64_t async_cnt = 0;
+	int nr_cpl = 0;
+	uint32_t index;
+	uint16_t offset;
+	uint32_t i;
+
+	for (offset = 0; offset < mpool_iter_step; offset++) {
+		for (i = 0; index = i * mpool_iter_step + offset, index < nr_buf; i++) {
+			if (unlikely(rte_dma_copy(dev_id,
+						0,
+						srcs[index]->buf_iova + srcs[index]->data_off,
+						dsts[index]->buf_iova + dsts[index]->data_off,
+						buf_size,
+						0) < 0)) {
+				rte_dma_submit(dev_id, 0);
+				while (rte_dma_burst_capacity(dev_id, 0) == 0) {
+					nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB,
+								NULL, NULL);
+					async_cnt -= nr_cpl;
+				}
+				if (rte_dma_copy(dev_id,
+						0,
+						srcs[index]->buf_iova + srcs[index]->data_off,
+						dsts[index]->buf_iova + dsts[index]->data_off,
+						buf_size,
+						0) < 0) {
+					printf("enqueue fail again at %u\n", index);
+					printf("space:%d\n", rte_dma_burst_capacity(dev_id, 0));
+					rte_exit(EXIT_FAILURE, "DMA enqueue failed\n");
+				}
+			}
+			async_cnt++;
+
+			/**
+			 * When '&' is used to wrap an index, mask must be a power of 2.
+			 * That is, kick_batch must be 2^n.
+			 */
+			if (unlikely((async_cnt % kick_batch) == 0)) {
+				rte_dma_submit(dev_id, 0);
+				/* add a poll to avoid ring full */
+				nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
+				async_cnt -= nr_cpl;
+			}
+		}
+
+		rte_dma_submit(dev_id, 0);
+		while (async_cnt > 0) {
+			nr_cpl = rte_dma_completed(dev_id, 0, MAX_DMA_CPL_NB, NULL, NULL);
+			async_cnt -= nr_cpl;
+		}
+	}
+}
+
+static int
+dma_mem_copy(void *p)
+{
+	uint64_t ops;
+	uint32_t memory;
+	float bandwidth;
+	double time_sec;
+	uint32_t lcore_id = rte_lcore_id();
+	struct lcore_params *params = (struct lcore_params *)p;
+	uint32_t repeat_times = params->repeat_times;
+	uint32_t buf_size = params->buf_size;
+	uint16_t kick_batch = params->kick_batch;
+	uint32_t lcore_nr_buf = params->nr_buf;
+	uint16_t dev_id = params->dev_id;
+	uint16_t mpool_iter_step = params->mpool_iter_step;
+	struct rte_mbuf **srcs = params->srcs;
+	struct rte_mbuf **dsts = params->dsts;
+	uint64_t begin, end, total_cycles = 0, avg_cycles = 0;
+	uint32_t r;
+
+	begin = rte_rdtsc();
+
+	for (r = 0; r < repeat_times; r++)
+		do_dma_mem_copy(dev_id, lcore_nr_buf, kick_batch, buf_size,
+			mpool_iter_step, srcs, dsts);
+
+	end = rte_rdtsc();
+	total_cycles = end - begin;
+	time_sec = (double)total_cycles / rte_get_timer_hz();
+
+	calc_result(params, total_cycles, time_sec, repeat_times, &memory,
+			&avg_cycles, &bandwidth, &ops);
+	output_result(params->scenario_id, lcore_id, dev_id, avg_cycles, buf_size, lcore_nr_buf,
+			memory, bandwidth, ops, true);
+
+	rte_free(p);
+
+	return 0;
+}
+
+static int
+cpu_mem_copy(void *p)
+{
+	uint32_t idx;
+	uint32_t lcore_id;
+	uint32_t memory;
+	uint64_t ops;
+	float bandwidth;
+	double time_sec;
+	struct lcore_params *params = (struct lcore_params *)p;
+	uint32_t repeat_times = params->repeat_times;
+	uint32_t buf_size = params->buf_size;
+	uint32_t lcore_nr_buf = params->nr_buf;
+	uint16_t mpool_iter_step = params->mpool_iter_step;
+	struct rte_mbuf **srcs = params->srcs;
+	struct rte_mbuf **dsts = params->dsts;
+	uint64_t begin, end, total_cycles = 0, avg_cycles = 0;
+	uint32_t k, j, offset;
+
+	begin = rte_rdtsc();
+
+	for (k = 0; k < repeat_times; k++) {
+		/* copy buffer form src to dst */
+		for (offset = 0; offset < mpool_iter_step; offset++) {
+			for (j = 0; idx = j * mpool_iter_step + offset, idx < lcore_nr_buf; j++) {
+				rte_memcpy((void *)(uintptr_t)rte_mbuf_data_iova(dsts[idx]),
+					(void *)(uintptr_t)rte_mbuf_data_iova(srcs[idx]),
+					(size_t)buf_size);
+			}
+		}
+	}
+
+	end = rte_rdtsc();
+	total_cycles = end - begin;
+	time_sec = (double)total_cycles / rte_get_timer_hz();
+
+	lcore_id = rte_lcore_id();
+
+	calc_result(params, total_cycles, time_sec, repeat_times, &memory,
+			&avg_cycles, &bandwidth, &ops);
+	output_result(params->scenario_id, lcore_id, 0, avg_cycles, buf_size, lcore_nr_buf,
+			memory, bandwidth, ops, false);
+
+	rte_free(p);
+
+	return 0;
+}
+
+static int
+setup_memory_env(struct test_configure *cfg, struct rte_mbuf ***srcs,
+			struct rte_mbuf ***dsts)
+{
+	uint32_t i;
+	unsigned int buf_size = cfg->buf_size.cur;
+	unsigned int nr_sockets;
+	uint32_t nr_buf = cfg->nr_buf;
+
+	nr_sockets = rte_socket_count();
+	if (cfg->src_numa_node >= nr_sockets ||
+		cfg->dst_numa_node >= nr_sockets) {
+		printf("Error: Source or destination numa exceeds the acture numa nodes.\n");
+		return -1;
+	}
+
+	src_pool = rte_pktmbuf_pool_create("Benchmark_DMA_SRC",
+			nr_buf, /* n == num elements */
+			64,  /* cache size */
+			0,   /* priv size */
+			buf_size + RTE_PKTMBUF_HEADROOM,
+			cfg->src_numa_node);
+	if (src_pool == NULL) {
+		PRINT_ERR("Error with source mempool creation.\n");
+		return -1;
+	}
+
+	dst_pool = rte_pktmbuf_pool_create("Benchmark_DMA_DST",
+			nr_buf, /* n == num elements */
+			64,  /* cache size */
+			0,   /* priv size */
+			buf_size + RTE_PKTMBUF_HEADROOM,
+			cfg->dst_numa_node);
+	if (dst_pool == NULL) {
+		PRINT_ERR("Error with destination mempool creation.\n");
+		return -1;
+	}
+
+	*srcs = (struct rte_mbuf **)(malloc(nr_buf * sizeof(struct rte_mbuf *)));
+	if (*srcs == NULL) {
+		printf("Error: srcs malloc failed.\n");
+		return -1;
+	}
+
+	*dsts = (struct rte_mbuf **)(malloc(nr_buf * sizeof(struct rte_mbuf *)));
+	if (*dsts == NULL) {
+		printf("Error: dsts malloc failed.\n");
+		return -1;
+	}
+
+	for (i = 0; i < nr_buf; i++) {
+		(*srcs)[i] = rte_pktmbuf_alloc(src_pool);
+		(*dsts)[i] = rte_pktmbuf_alloc(dst_pool);
+		if ((!(*srcs)[i]) || (!(*dsts)[i])) {
+			printf("src: %p, dst: %p\n", (*srcs)[i], (*dsts)[i]);
+			return -1;
+		}
+
+		(*srcs)[i]->data_len = (*srcs)[i]->pkt_len = buf_size;
+		(*dsts)[i]->data_len = (*dsts)[i]->pkt_len = buf_size;
+	}
+
+	return 0;
+}
+
+void
+dma_mem_copy_benchmark(struct test_configure *cfg)
+{
+	uint32_t i;
+	uint32_t offset;
+	unsigned int lcore_id  = 0;
+	struct rte_mbuf **srcs = NULL, **dsts = NULL;
+	unsigned int buf_size = cfg->buf_size.cur;
+	uint16_t kick_batch = cfg->kick_batch.cur;
+	uint16_t mpool_iter_step = cfg->mpool_iter_step;
+	uint32_t nr_buf = cfg->nr_buf = (cfg->mem_size.cur * 1024 * 1024) / (cfg->buf_size.cur * 2);
+	uint16_t nb_workers = cfg->nb_workers;
+	uint32_t repeat_times = cfg->repeat_times;
+
+	if (setup_memory_env(cfg, &srcs, &dsts) < 0)
+		goto out;
+
+	if (config_dmadevs(nb_workers, cfg->ring_size.cur) < 0)
+		goto out;
+
+	if (cfg->cache_flush) {
+		struct buf_info info;
+
+		info.array = srcs;
+		info.buf_size = buf_size;
+		info.nr_buf = nr_buf;
+		cache_flush_buf(&info);
+
+		info.array = dsts;
+		cache_flush_buf(&info);
+		rte_mb();
+	}
+
+	printf("Start testing....\n");
+
+	for (i = 0; i < nb_workers; i++) {
+		lcore_id = rte_get_next_lcore(lcore_id, true, true);
+		offset = nr_buf / nb_workers * i;
+
+		struct lcore_params *p = rte_malloc(NULL, sizeof(*p), 0);
+		if (!p) {
+			printf("lcore parameters malloc failure for lcore %d\n", lcore_id);
+			break;
+		}
+		*p = (struct lcore_params) {
+			dmadev_ids[i],
+			(uint32_t)(nr_buf/nb_workers),
+			kick_batch,
+			buf_size,
+			repeat_times,
+			mpool_iter_step,
+			srcs + offset,
+			dsts + offset,
+			cfg->scenario_id
+		};
+
+		rte_eal_remote_launch((lcore_function_t *)dma_mem_copy, p, lcore_id);
+	}
+
+	rte_eal_mp_wait_lcore();
+
+out:
+	/* free env */
+	if (srcs) {
+		for (i = 0; i < nr_buf; i++)
+			rte_pktmbuf_free(srcs[i]);
+		free(srcs);
+	}
+	if (dsts) {
+		for (i = 0; i < nr_buf; i++)
+			rte_pktmbuf_free(dsts[i]);
+		free(dsts);
+	}
+
+	if (src_pool)
+		rte_mempool_free(src_pool);
+	if (dst_pool)
+		rte_mempool_free(dst_pool);
+
+	for (i = 0; i < nb_dmadevs; i++) {
+		printf("Stopping dmadev %d\n", dmadev_ids[i]);
+		rte_dma_stop(dmadev_ids[i]);
+	}
+}
+
+void
+cpu_mem_copy_benchmark(struct test_configure *cfg)
+{
+	uint32_t i, offset;
+	uint32_t repeat_times = cfg->repeat_times;
+	uint32_t kick_batch = cfg->kick_batch.cur;
+	uint32_t buf_size = cfg->buf_size.cur;
+	uint32_t nr_buf = cfg->nr_buf = (cfg->mem_size.cur * 1024 * 1024) / (cfg->buf_size.cur * 2);
+	uint16_t nb_workers = cfg->nb_workers;
+	uint16_t mpool_iter_step = cfg->mpool_iter_step;
+	struct rte_mbuf **srcs  = NULL, **dsts  = NULL;
+	unsigned int lcore_id = 0;
+
+	if (setup_memory_env(cfg, &srcs, &dsts) < 0)
+		goto out;
+
+	for (i = 0; i < nb_workers; i++) {
+		lcore_id = rte_get_next_lcore(lcore_id, rte_lcore_count() > 1 ? 1 : 0, 1);
+		offset = nr_buf / nb_workers * i;
+		struct lcore_params *p = rte_malloc(NULL, sizeof(*p), 0);
+		if (!p) {
+			printf("lcore parameters malloc failure for lcore %d\n", lcore_id);
+			break;
+		}
+		*p = (struct lcore_params) { 0, nr_buf/nb_workers, kick_batch,
+						buf_size, repeat_times, mpool_iter_step,
+						srcs + offset, dsts + offset, cfg->scenario_id };
+		rte_eal_remote_launch((lcore_function_t *)cpu_mem_copy, p, lcore_id);
+	}
+
+	rte_eal_mp_wait_lcore();
+
+out:
+	/* free env */
+	if (srcs) {
+		for (i = 0; i < nr_buf; i++)
+			rte_pktmbuf_free(srcs[i]);
+		free(srcs);
+	}
+	if (dsts) {
+		for (i = 0; i < nr_buf; i++)
+			rte_pktmbuf_free(dsts[i]);
+		free(dsts);
+	}
+
+	if (src_pool)
+		rte_mempool_free(src_pool);
+	if (dst_pool)
+		rte_mempool_free(dst_pool);
+}
diff --git a/app/test-dma-perf/benchmark.h b/app/test-dma-perf/benchmark.h
new file mode 100644
index 0000000000..f5ad8d6d99
--- /dev/null
+++ b/app/test-dma-perf/benchmark.h
@@ -0,0 +1,12 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+#ifndef _BENCHMARK_H_
+#define _BENCHMARK_H_
+
+void dma_mem_copy_benchmark(struct test_configure *cfg);
+
+void cpu_mem_copy_benchmark(struct test_configure *cfg);
+
+#endif /* _BENCHMARK_H_ */
diff --git a/app/test-dma-perf/config.ini b/app/test-dma-perf/config.ini
new file mode 100644
index 0000000000..e24bb19414
--- /dev/null
+++ b/app/test-dma-perf/config.ini
@@ -0,0 +1,61 @@ 
+
+; Supported test types:
+; DMA_MEM_COPY|CPU_MEM_COPY
+
+; Parameters:
+; "mem_size","buf_size","dma_ring_size","kick_batch".
+; "mem_size" means the size of the memory footprint.
+; "buf_size" means the memory size of a single operation.
+; "dma_ring_size" means the dma ring buffer size.
+; "kick_batch" means dma operation batch size.
+
+; Format: variable=first[,last,increment[,ADD|MUL]]
+; ADD is the default mode.
+
+; src_numa_node is used to control the numa node where the source memory is allocated.
+; dst_numa_node is used to control the numa node where the destination memory is allocated.
+
+; cache_flush is used to control if the cache should be flushed.
+
+; repeat_times is used to control the repeat times of the whole case.
+
+; worker_threads is used to control the threads number of the test app.
+; It should be less than the core number.
+
+; mpool_iter_step is used to control the buffer continuity.
+
+; Bind DMA to lcore:
+; Specify the "lcore_dma" parameter.
+; The number of "lcore_dma" should be greater than or equal to the number of "worker_threads".
+; Otherwise the remaining DMA devices will be automatically allocated to threads that are not
+; specified. If EAL parameters "-l" and "-a" are specified, the "lcore_dma" should be within
+; their range.
+
+[case1]
+type=DMA_MEM_COPY
+mem_size=10
+buf_size=64,8192,2,MUL
+dma_ring_size=1024
+kick_batch=32
+src_numa_node=0
+dst_numa_node=0
+cache_flush=0
+repeat_times=10
+worker_threads=1
+mpool_iter_step=1
+lcore_dma=lcore3@0000:00:04.0
+eal_args=--legacy-mem --file-prefix=test
+
+[case2]
+type=CPU_MEM_COPY
+mem_size=10
+buf_size=64,8192,2,MUL
+dma_ring_size=1024
+kick_batch=32
+src_numa_node=0
+dst_numa_node=1
+cache_flush=0
+repeat_times=100
+worker_threads=1
+mpool_iter_step=1
+eal_args=--no-pci
diff --git a/app/test-dma-perf/main.c b/app/test-dma-perf/main.c
new file mode 100644
index 0000000000..8041f5fdaf
--- /dev/null
+++ b/app/test-dma-perf/main.c
@@ -0,0 +1,434 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+#include <stdio.h>
+#if !defined(RTE_EXEC_ENV_LINUX)
+
+int
+main(int argc, char *argv[])
+{
+	printf("OS not supported, skipping test\n");
+	return 0;
+}
+
+#else
+
+#include <stdlib.h>
+#include <getopt.h>
+#include <signal.h>
+#include <stdbool.h>
+#include <unistd.h>
+#include <sys/wait.h>
+#include <inttypes.h>
+
+#include <rte_eal.h>
+#include <rte_cfgfile.h>
+#include <rte_string_fns.h>
+#include <rte_lcore.h>
+
+#include "main.h"
+#include "benchmark.h"
+
+#define CSV_HDR_FMT "Case %u : %s,lcore,DMA,buffer size,nr_buf,memory(MB),cycle,bandwidth(Gbps),OPS\n"
+
+#define MAX_EAL_PARAM_NB 100
+#define MAX_EAL_PARAM_LEN 1024
+
+#define DMA_MEM_COPY "DMA_MEM_COPY"
+#define CPU_MEM_COPY "CPU_MEM_COPY"
+
+#define MAX_PARAMS_PER_ENTRY 4
+
+enum {
+	TEST_TYPE_NONE = 0,
+	TEST_TYPE_DMA_MEM_COPY,
+	TEST_TYPE_CPU_MEM_COPY
+};
+
+#define MAX_TEST_CASES 16
+static struct test_configure test_cases[MAX_TEST_CASES];
+
+char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
+
+static FILE *fd;
+
+static void
+output_csv(bool need_blankline)
+{
+	uint32_t i;
+
+	if (need_blankline) {
+		fprintf(fd, "%s", ",,,,,,,,\n");
+		fprintf(fd, "%s", ",,,,,,,,\n");
+	}
+
+	for (i = 0; i < RTE_DIM(output_str); i++) {
+		if (output_str[i][0]) {
+			fprintf(fd, "%s", output_str[i]);
+			memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);
+		}
+	}
+
+	fflush(fd);
+}
+
+static void
+output_env_info(void)
+{
+	snprintf(output_str[0], MAX_OUTPUT_STR_LEN, "test environment:\n");
+	snprintf(output_str[1], MAX_OUTPUT_STR_LEN, "frequency,%" PRIu64 "\n", rte_get_timer_hz());
+
+	output_csv(true);
+}
+
+static void
+output_header(uint32_t case_id, struct test_configure *case_cfg)
+{
+	snprintf(output_str[0], MAX_OUTPUT_STR_LEN,
+			CSV_HDR_FMT, case_id, case_cfg->test_type_str);
+
+	output_csv(true);
+}
+
+static void
+run_test_case(struct test_configure *case_cfg)
+{
+	switch (case_cfg->test_type) {
+	case TEST_TYPE_DMA_MEM_COPY:
+		dma_mem_copy_benchmark(case_cfg);
+		break;
+	case TEST_TYPE_CPU_MEM_COPY:
+		cpu_mem_copy_benchmark(case_cfg);
+		break;
+	default:
+		printf("Unknown test type. %s\n", case_cfg->test_type_str);
+		break;
+	}
+}
+
+static void
+run_test(uint32_t case_id, struct test_configure *case_cfg)
+{
+	uint32_t i;
+	uint32_t nb_lcores = rte_lcore_count();
+	struct test_configure_entry *mem_size = &case_cfg->mem_size;
+	struct test_configure_entry *buf_size = &case_cfg->buf_size;
+	struct test_configure_entry *ring_size = &case_cfg->ring_size;
+	struct test_configure_entry *kick_batch = &case_cfg->kick_batch;
+	struct test_configure_entry *var_entry = NULL;
+
+	for (i = 0; i < RTE_DIM(output_str); i++)
+		memset(output_str[i], 0, MAX_OUTPUT_STR_LEN);
+
+	if (nb_lcores <= case_cfg->nb_workers) {
+		printf("Case %u: Not enough lcores (%u) for all workers (%u).\n",
+			case_id, nb_lcores, case_cfg->nb_workers);
+		return;
+	}
+
+	RTE_LOG(INFO, DMA, "Number of used lcores: %u.\n", nb_lcores);
+
+	if (mem_size->incr != 0)
+		var_entry = mem_size;
+
+	if (buf_size->incr != 0)
+		var_entry = buf_size;
+
+	if (ring_size->incr != 0)
+		var_entry = ring_size;
+
+	if (kick_batch->incr != 0)
+		var_entry = kick_batch;
+
+	case_cfg->scenario_id = 0;
+
+	output_header(case_id, case_cfg);
+
+	if (var_entry) {
+		for (var_entry->cur = var_entry->first; var_entry->cur <= var_entry->last;) {
+			case_cfg->scenario_id++;
+			printf("\nRunning scenario %d\n", case_cfg->scenario_id);
+
+			run_test_case(case_cfg);
+			output_csv(false);
+
+			if (var_entry->op == OP_MUL)
+				var_entry->cur *= var_entry->incr;
+			else
+				var_entry->cur += var_entry->incr;
+
+
+		}
+	} else {
+		run_test_case(case_cfg);
+		output_csv(false);
+	}
+}
+
+static int
+parse_entry(const char *value, struct test_configure_entry *entry)
+{
+	char input[255] = {0};
+	char *args[MAX_PARAMS_PER_ENTRY];
+	int args_nr = -1;
+
+	strncpy(input, value, 254);
+	if (*input == '\0')
+		goto out;
+
+	args_nr = rte_strsplit(input, strlen(input), args, MAX_PARAMS_PER_ENTRY, ',');
+	if (args_nr <= 0)
+		goto out;
+
+	entry->cur = entry->first = (uint32_t)atoi(args[0]);
+	entry->last = args_nr > 1 ? (uint32_t)atoi(args[1]) : 0;
+	entry->incr = args_nr > 2 ? (uint32_t)atoi(args[2]) : 0;
+
+	if (args_nr > 3) {
+		if (!strcmp(args[3], "MUL"))
+			entry->op = OP_MUL;
+		else
+			entry->op = OP_ADD;
+	} else
+		entry->op = OP_NONE;
+out:
+	return args_nr;
+}
+
+static void
+load_configs(void)
+{
+	struct rte_cfgfile *cfgfile;
+	int nb_sections, i;
+	struct test_configure *test_case;
+	char **sections_name;
+	const char *section_name, *case_type;
+	const char *mem_size_str, *buf_size_str, *ring_size_str, *kick_batch_str;
+	int args_nr, nb_vp;
+
+	sections_name = malloc(MAX_TEST_CASES * sizeof(char *));
+	for (i = 0; i < MAX_TEST_CASES; i++)
+		sections_name[i] = malloc(CFG_NAME_LEN * sizeof(char *));
+
+	cfgfile = rte_cfgfile_load("./config.ini", 0);
+	if (!cfgfile) {
+		printf("Open configure file error.\n");
+		exit(1);
+	}
+
+	nb_sections = rte_cfgfile_num_sections(cfgfile, NULL, 0);
+	if (nb_sections > MAX_TEST_CASES) {
+		printf("Error: The maximum number of cases is %d.\n", MAX_TEST_CASES);
+		exit(1);
+	}
+	rte_cfgfile_sections(cfgfile, sections_name, MAX_TEST_CASES);
+	for (i = 0; i < nb_sections; i++) {
+		test_case = &test_cases[i];
+		section_name = sections_name[i];
+		case_type = rte_cfgfile_get_entry(cfgfile, section_name, "type");
+		if (!case_type) {
+			printf("Error: No case type in case %d\n.", i + 1);
+			exit(1);
+		}
+		if (!strcmp(case_type, DMA_MEM_COPY)) {
+			test_case->test_type = TEST_TYPE_DMA_MEM_COPY;
+			test_case->test_type_str = DMA_MEM_COPY;
+		} else if (!strcmp(case_type, CPU_MEM_COPY)) {
+			test_case->test_type = TEST_TYPE_CPU_MEM_COPY;
+			test_case->test_type_str = CPU_MEM_COPY;
+		} else {
+			printf("Error: Cannot find case type %s.\n", case_type);
+			exit(1);
+		}
+
+		nb_vp = 0;
+
+		test_case->src_numa_node = (int)atoi(rte_cfgfile_get_entry(cfgfile,
+								section_name, "src_numa_node"));
+		test_case->dst_numa_node = (int)atoi(rte_cfgfile_get_entry(cfgfile,
+								section_name, "dst_numa_node"));
+
+		mem_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "mem_size");
+		args_nr = parse_entry(mem_size_str, &test_case->mem_size);
+		if (args_nr < 0) {
+			printf("parse error\n");
+			break;
+		} else if (args_nr > 1)
+			nb_vp++;
+
+		buf_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "buf_size");
+		args_nr = parse_entry(buf_size_str, &test_case->buf_size);
+		if (args_nr < 0) {
+			printf("parse error\n");
+			break;
+		} else if (args_nr > 1)
+			nb_vp++;
+
+		ring_size_str = rte_cfgfile_get_entry(cfgfile, section_name, "dma_ring_size");
+		args_nr = parse_entry(ring_size_str, &test_case->ring_size);
+		if (args_nr < 0) {
+			printf("parse error\n");
+			break;
+		} else if (args_nr > 1)
+			nb_vp++;
+
+		kick_batch_str = rte_cfgfile_get_entry(cfgfile, section_name, "kick_batch");
+		args_nr = parse_entry(kick_batch_str, &test_case->kick_batch);
+		if (args_nr < 0) {
+			printf("parse error\n");
+			break;
+		} else if (args_nr > 1)
+			nb_vp++;
+
+		if (nb_vp > 2) {
+			printf("%s, variable parameters can only have one.\n", section_name);
+			break;
+		}
+
+		test_case->cache_flush =
+			(int)atoi(rte_cfgfile_get_entry(cfgfile, section_name, "cache_flush"));
+		test_case->repeat_times =
+			(uint32_t)atoi(rte_cfgfile_get_entry(cfgfile,
+					section_name, "repeat_times"));
+		test_case->nb_workers =
+			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
+					section_name, "worker_threads"));
+		test_case->mpool_iter_step =
+			(uint16_t)atoi(rte_cfgfile_get_entry(cfgfile,
+					section_name, "mpool_iter_step"));
+
+		test_case->eal_args = rte_cfgfile_get_entry(cfgfile, section_name, "eal_args");
+	}
+
+	rte_cfgfile_close(cfgfile);
+	for (i = 0; i < MAX_TEST_CASES; i++) {
+		if (sections_name[i] != NULL)
+			free(sections_name[i]);
+	}
+	free(sections_name);
+}
+
+/* Parse the argument given in the command line of the application */
+static int
+append_eal_args(int argc, char **argv, const char *eal_args, char **new_argv)
+{
+	int i;
+	char *tokens[MAX_EAL_PARAM_NB];
+	char args[MAX_EAL_PARAM_LEN] = {0};
+	int new_argc, token_nb;
+
+	new_argc = argc;
+
+	for (i = 0; i < argc; i++)
+		strcpy(new_argv[i], argv[i]);
+
+	if (eal_args) {
+		strcpy(args, eal_args);
+		token_nb = rte_strsplit(args, strlen(args),
+					tokens, MAX_EAL_PARAM_NB, ' ');
+		for (i = 0; i < token_nb; i++)
+			strcpy(new_argv[new_argc++], tokens[i]);
+	}
+
+	return new_argc;
+}
+
+int
+main(int argc __maybe_unused, char *argv[] __maybe_unused)
+{
+	int ret;
+	uint32_t i, nb_lcores;
+	pid_t cpid, wpid;
+	int wstatus;
+	char args[MAX_EAL_PARAM_NB][MAX_EAL_PARAM_LEN];
+	char *pargs[100];
+	int new_argc;
+
+
+	memset(args, 0, sizeof(args));
+	for (i = 0; i < 100; i++)
+		pargs[i] = args[i];
+
+	load_configs();
+	fd = fopen("./test_result.csv", "w");
+	if (!fd) {
+		printf("Open output CSV file error.\n");
+		return 0;
+	}
+	fclose(fd);
+
+	/* loop each case, run it */
+	for (i = 0; i < MAX_TEST_CASES; i++) {
+		if (test_cases[i].test_type != TEST_TYPE_NONE) {
+			cpid = fork();
+			if (cpid < 0) {
+				printf("Fork case %d failed.\n", i + 1);
+				exit(EXIT_FAILURE);
+			} else if (cpid == 0) {
+				printf("\nRunning case %u\n", i + 1);
+
+				if (test_cases[i].eal_args) {
+					new_argc = append_eal_args(argc, argv,
+						test_cases[i].eal_args, pargs);
+
+					ret = rte_eal_init(new_argc, pargs);
+				} else {
+					ret = rte_eal_init(argc, argv);
+				}
+				if (ret < 0)
+					rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
+
+				/* Check lcores. */
+				nb_lcores = rte_lcore_count();
+				if (nb_lcores < 2)
+					rte_exit(EXIT_FAILURE,
+						"There should be at least 2 worker lcores.\n");
+
+				fd = fopen("./test_result.csv", "a");
+				if (!fd) {
+					printf("Open output CSV file error.\n");
+					return 0;
+				}
+
+				if (i == 0)
+					output_env_info();
+				run_test(i + 1, &test_cases[i]);
+
+				/* clean up the EAL */
+				rte_eal_cleanup();
+
+				fclose(fd);
+
+				printf("\nCase %u completed.\n", i + 1);
+
+				exit(EXIT_SUCCESS);
+			} else {
+				wpid = waitpid(cpid, &wstatus, 0);
+				if (wpid == -1) {
+					printf("waitpid error.\n");
+					exit(EXIT_FAILURE);
+				}
+
+				if (WIFEXITED(wstatus))
+					printf("Case process exited. status %d\n",
+						WEXITSTATUS(wstatus));
+				else if (WIFSIGNALED(wstatus))
+					printf("Case process killed by signal %d\n",
+						WTERMSIG(wstatus));
+				else if (WIFSTOPPED(wstatus))
+					printf("Case process stopped by signal %d\n",
+						WSTOPSIG(wstatus));
+				else if (WIFCONTINUED(wstatus))
+					printf("Case process continued.\n");
+				else
+					printf("Case process unknown terminated.\n");
+			}
+		}
+	}
+
+	printf("Bye...\n");
+	return 0;
+}
+
+#endif
diff --git a/app/test-dma-perf/main.h b/app/test-dma-perf/main.h
new file mode 100644
index 0000000000..a8fcf4f34d
--- /dev/null
+++ b/app/test-dma-perf/main.h
@@ -0,0 +1,57 @@ 
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2022 Intel Corporation
+ */
+
+#ifndef _MAIN_H_
+#define _MAIN_H_
+
+
+#include <rte_common.h>
+#include <rte_cycles.h>
+
+#ifndef __maybe_unused
+#define __maybe_unused	__rte_unused
+#endif
+
+#define MAX_WORKER_NB 128
+#define MAX_OUTPUT_STR_LEN 512
+
+#define RTE_LOGTYPE_DMA RTE_LOGTYPE_USER1
+
+extern char output_str[MAX_WORKER_NB][MAX_OUTPUT_STR_LEN];
+
+typedef enum {
+	OP_NONE = 0,
+	OP_ADD,
+	OP_MUL
+} alg_op_type;
+
+struct test_configure_entry {
+	uint32_t first;
+	uint32_t last;
+	uint32_t incr;
+	alg_op_type op;
+	uint32_t cur;
+};
+
+struct test_configure {
+	uint8_t test_type;
+	const char *test_type_str;
+	uint16_t src_numa_node;
+	uint16_t dst_numa_node;
+	uint16_t opcode;
+	bool is_dma;
+	struct test_configure_entry mem_size;
+	struct test_configure_entry buf_size;
+	struct test_configure_entry ring_size;
+	struct test_configure_entry kick_batch;
+	uint32_t cache_flush;
+	uint32_t nr_buf;
+	uint32_t repeat_times;
+	uint32_t nb_workers;
+	uint16_t mpool_iter_step;
+	const char *eal_args;
+	uint8_t scenario_id;
+};
+
+#endif /* _MAIN_H_ */
diff --git a/app/test-dma-perf/meson.build b/app/test-dma-perf/meson.build
new file mode 100644
index 0000000000..001f67f6c1
--- /dev/null
+++ b/app/test-dma-perf/meson.build
@@ -0,0 +1,20 @@ 
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2019-2022 Intel Corporation
+
+# meson file, for building this example as part of a main DPDK build.
+#
+# To build this example as a standalone application with an already-installed
+# DPDK instance, use 'make'
+
+if is_windows
+    build = false
+    reason = 'not supported on Windows'
+    subdir_done()
+endif
+
+deps += ['dmadev', 'mbuf', 'cfgfile']
+
+sources = files(
+        'main.c',
+        'benchmark.c',
+)